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Abstract

Domain shift, encountered when using a trained
model for a new patient population, creates sig-
nificant challenges for sequential decision making
in healthcare since the target domain may be
both data-scarce and confounded. In this paper,
we propose a method for off-policy transfer by
modeling the underlying generative process with
a causal mechanism. We use informative priors
from the source domain to augment counterfac-
tual trajectories in the target in a principled
manner. We demonstrate how this addresses
data-scarcity in the presence of unobserved con-
founding. The causal parametrization of our
sampling procedure guarantees that counterfac-
tual quantities can be estimated from scarce
observational target data, maintaining intuitive
stability properties. Policy learning in the target
domain is further regularized via the source pol-
icy through KL-divergence. Through evaluation
on a simulated sepsis treatment task, our coun-
terfactual policy transfer procedure significantly
improves the performance of a learned treatment
policy when assumptions of “no-unobserved con-
founding” are relaxed.

Data and Code Availability We use data derived
from a Sepsis simulator1 to demonstrate challenges
that partial observability presents when learning treat-
ment policies (Oberst and Sontag, 2019). This sim-
ulator approximates patient physiology (discretized
measurements of heart rate, blood pressure, oxygen
concentration, and glucose levels) in response to med-
ical interventions and whether the patient is diabetic.
Possible treatments include antibiotics, vasopressors,
and mechanical ventilation. Our code, used to aug-
ment the simulator and develop the approach de-
scribed in this paper can be found at https://github.

com/MLforHealth/counterfactual_transfer.

1. https://github.com/clinicalml/gumbel-max-scm

1. Introduction

As the development of machine learning algorithms
matures there is increasing interest in deploying mod-
els to complex clinical domains (Ghassemi et al., 2018).
These efforts include the application of reinforcement
learning (RL) to sequential decision making and treat-
ment recommendation (Yu et al., 2021). However,
domain shift between training (source) and deploy-
ment (target) patient populations (Finlayson et al.,
2021) presents challenges largely unaddressed in re-
cent RL work. In particular, we are concerned with
shifting incidence proportions of (possibly unknown
and confounded) comorbidities between independent
clinical environments (Subbaswamy and Saria, 2018,
2020). These challenges are amplified when few sam-
ples are available in the target domain since—for ethi-
cal and safety purposes—exploratory new data cannot
be collected. Naively learned treatment policies may
overfit to data-collection artefacts (Agniel et al., 2018),
fail to learn meaningful interventions (François-Lavet
et al., 2019), or mistime appropriate interventions (Bai
et al., 2014). To provide reliable decision support and
avoid such errors, principled methods are needed when
transferring learned treatment policies between clini-
cal environments.

In this paper we frame transfer in the context of of-
fline, off-policy RL between a data-rich source domain
to a data-scarce target domain, as we seek to learn
robust policies from fixed observational data. We
consider two main components of transfer: i) improv-
ing estimates of statistical quantities in the target
domain, i.e. transition dynamics, and ii) adapting the
policy learned within the source domain. We demon-
strate that transfer in this setting can be naturally
framed as a causal inference problem to answer the
question, “How well can a previously trained policy
perform in a new target domain with limited observa-
tional data?”
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We consider the effects of data-scarcity and confound-
ing when improving the statistical estimation of phys-
iological responses to treatments (otherwise known as
the transition dynamics) of a target patient popula-
tion. Sub-populations within the observed patient co-
hort (perhaps categorized by disease phenotype) may
exhibit dissimilar behavior in response to treatment,
the composition of which may differ in target domain.
When critical information about sub-populations is
unavailable between domains—creating a measure of
unobserved confounding and model misspecification—
the accuracy of estimated dynamics will be further
constrained. To address this, we propose a stochastic
regularization of the estimated transition dynamics in
the target domain using the estimates derived from
the source domain, motivated from principles of coun-
terfactual estimation (Pearl, 2009). We use this coun-
terfactual regularization to provide a form of guided
exploration in the target domain as a way to improve
the estimated transition statistics.

The second component of transfer is an intelligent
use of the source policy, π(S). Even with extensive
exploration, a learned policy in the target domain
may fail to converge or learn safe interventions due to
regions of low data support (Gottesman et al., 2019a)
or an inaccurate dynamics model (Sutton and Barto,
2018). To address this, we guide the development
of the target policy π(T) through regularization with
π(S). Trained with more data, π(S) has been exposed
to a more accurate estimate of the dynamics as well
as observations not present in the target domain and
serves to stabilize π(T). By regularizing policy learn-
ing, we avoid undue overconfidence when determining
correct treatment decisions in the target.

We propose a novel approach for policy transfer via a
dual-regularization approach in offline settings. Specif-
ically:

1. We leverage complementary elements from the
source domain to support guided counterfactual
sampling in the target domain which facilitates
better policy learning with limited data.

2. We prove that our transfer method, Counterfac-
tually Guided Policy Transfer (CFPT), maintains
important stability properties.

3. We demonstrate, with a simulated clinical task,
that CFPT obtains notable performance gains
(up to 3x improvement) across domain-shifted
and confounded environments.

2. Related Work

RL in Health The use of RL has been explored
in healthcare to develop optimal treatment strate-
gies (Yu et al., 2021), despite challenges presented by
likely confounded data (Gottesman et al., 2019a). RL
has been used to address schizophrenia (Shortreed
et al., 2011), HIV (Ernst et al., 2006), sepsis (Ko-
morowski et al., 2018; Raghu et al., 2018b; Fatemi
et al., 2021) and mechanical ventilation (Prasad et al.,
2017). There has also been efforts to develop reliable
evaluation of learned policies since they cannot be
directly tested (Kallus, 2018; Gottesman et al., 2019b;
Futoma et al., 2020a) and often fail to generalize be-
yond their training data (Futoma et al., 2020b).

Transfer learning in RL Transfer learning in RL
can improve policy learning in independent target do-
mains (Taylor and Stone, 2009). In healthcare settings,
transfer learning may enable personalized treatment
strategies (Marivate et al., 2014; Killian et al., 2017)
and better generalization across clinical environments.
However, challenges arise as domain shift may in-
duce additional confounding. When observations are
scarce, transition estimates are prone to error (Mannor
et al., 2004; Fard et al., 2008) limiting the effective-
ness of counterfactual inference (the investigation of
plausible alternatives to observed data). To address
this, we propose a novel way to incorporate induc-
tive bias using the source domain’s transition statis-
tics indirectly—through counterfactual inference—to
leverage sub-spaces of observations that may not be
in the target domain.

Causal Inference in ML Causal inference has been
used to formalize counterfactual investigations of un-
derlying data distributions (Pearl, 2009) and has
recently grown to be a major focus within offline
RL (Bannon et al., 2020). These foundational con-
cepts provide benefits when addressing domain shift
in supervised learning (Rojas-Carulla et al., 2018; Ar-
jovsky et al., 2019), decision making (Makar et al.,
2020; Johansson et al., 2020) and for policy reuse
across multiple environments in simple bandit (Barein-
boim and Pearl, 2014; Lee and Bareinboim, 2018; Lee
et al., 2020) and multi-agent settings (Foerster et al.,
2018). Yet, these methods require online data collec-
tion, not possible in clinical settings.

Causal concepts have also been useful evaluating poli-
cies learned from observational data (Athey, 2015;
Raghu et al., 2018a) (including partially observed do-
mains (Tennenholtz et al., 2020)). Counterfactual
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reasoning in RL has been used to infer individual-
ized treatment policies in healthcare with hidden con-
founding as a proxy for missing data (Parbhoo et al.,
2018, 2020) or long-term effects of treatment selec-
tion (Schulam and Saria, 2017). Yet, each of these
approaches rely on large and diverse training data.
Our proposed transfer framework specifically relies
on inducing bias (Hessel et al., 2019) indirectly by
leveraging causal frameworks to incorporate an infor-
mative prior from the source domain in a partially
observed sequential decision making setup.

Offline RL When learning from batch data, value
function estimates to guide policy development are
prone to overestimation (Hasselt, 2010) and high vari-
ance (Romoff et al., 2018). Various efforts regularize
the policy learning process to maintain stability and
limit extrapolation to states and actions not in the
dataset (Fujimoto et al., 2019; Kumar et al., 2019).
Recent offline RL algorithms additionally regularize
the learned policy to remain close to observed behav-
ior (Wu et al., 2019; Wang et al., 2020) through a
KL-divergence penalty. We use a similar mechanism
to constrain the target policy during learning via a
form of regularized policy iteration (Farahmand et al.,
2016). To the best of our knowledge, our work is
the first to leverage regularized policy iteration for
transfer in an offline RL setting.

3. Preliminaries

Causal modeling in RL Clinical decision making
is inherently a sequential process. We model sequen-
tial decision making in this setting as a partially ob-
served Markov decision process (POMDP) formalized
by a Structural Causal Model (SCM) (Buesing et al.,
2018). An SCM M describes the causal mechanisms
of a system’s observed variables X by defining func-
tions F that govern the mechanisms, and accounting
for independent stochasticity through exogenous, or
external, noise variables U. In the assumed causal
graph, the nodes that directly influence a variable
Xi are called the parents of Xi, PAi. The structural
equations f ∈ F of M define this relationship where
Xi = f(PAi, Ui). Additional background is provided
in the Appendix, Sec. A.

Notation To facilitate counterfactual inference for
transfer from a source domain S to a target do-
main T, we consider finite-state, finite-action episodic
POMDPs. States are denoted as St ∈ S, observations
by Ot ∈ O, and actions as At ∈ A with reward as

Figure 1: SCM of a POMDP from Buesing et al. (2018).
White nodes denote unobserved variables, gray
nodes denote observed latent variables and the
black nodes are calculated quantities. We as-
sume this structure for both the source and
target domain.

Rt = R(St, At) for t = {0, 1, . . . , T}. A POMDP can
be represented as an SCM by expressing conditional
distributions, e.g. state-transitions P (St+1|St, At),
as structural equations St+1 = f(St, At, USt) (Pearl,
2009), shown in Figure 1 (green edges). The rela-
tionship between At and the observed history Ht =

{O1, A1, O2, . . . , At−1, Ot} is governed by the behavior
policy µ (i.e. µ(At|Ht), red edges) from which trajec-
tories τ = (S1, A1, O1, . . . , St−1, At−1, Ot) are collected
with density pµ(τ).

If we choose to execute a learned policy π after hav-
ing observed the behavior policy µ, the functional
mapping of the red edges in Figure 1 changes from µ
to π. This soft-intervention is denoted by I ′(µ → π)

with the resulting SCM Mdo(I′(µ→π)). This induces
a modified probability distribution, P do(I′(µ→π))|I(µ)

on the POMDP. We denote the corresponding “coun-
terfactual” random variables with subscripts XI for
do(µ) and XI′ for do(π). The following procedure
outlines how to estimate such a counterfactual distri-
bution:

i) Abduction: estimate posteriors over exogenous noise
variables p(U|X),

ii) Intervention: execute π or do(I(µ → π)) as if the dis-
tribution of the exogenous variables is now fixed to the
posterior estimates from step i).

iii) Estimation: estimate the joint distribution of the data,

will correspond with P do(I′(µ→π))|I(µ).

In our case, we do not need to characterize the com-
plete distribution of the effect a policy has on the ob-
served data. An estimate of the reward from executing
π instead of µ is sufficient. This expected reward un-
der this counterfactual distribution can be estimated
from trajectories sampled from P do(I′(µ→π))|I(µ). We
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denote this reward by E[R(τ)|do(π)]. This expected
reward can also be used to evaluate the average treat-
ment effect under these soft-interventions to determine
the value of π (see Sec. A.1.1 in the Appendix).

In general, it is not always possible to estimate
P do(I′(µ→π))|I(µ) and its corresponding expectations.
However, we can estimate these quantities from ob-
served data samples if we appropriately restrict the
functional mappings f . One such choice of these map-
pings in the case of discrete or categorical states is
the Gumbel-Max SCM.

Gumbel-Max Topdown Sampling. The Gumbel-
Max trick enables sampling from categorical distribu-
tions Cat(α1, . . . , αK), where the category k will be
selected with probability αk among K distinct cate-
gories (Hazan and Jaakkola, 2012; Maddison et al.,
2014, 2016). This sampling procedure rests on infer-
ring Gumbel variables gk that can be transformed
into these probabilities αk.

Without any prior on the Gumbel variables g
(T)
k , cor-

responding to the discrete patient states observed in
a target domain T, the location parameters can be
obtained according to the empirical transition prob-
abilities P (T). That is, p(α) = δ(logP T(·|·)) where
δ is the dirac-delta distribution. Sampling from this
Gumbel given observation k′ can be done using the
Topdown procedure2.

That is, for a fixed and known αk, the Gumbel cor-

responding to the observed outcome k′, i.e. g
(T)
k′

is itself a Gumbel variable with location parameter
Z = log

∑K
k=1 αk. It follows that the maximum value

k′ and corresponding Gumbels are independent and

the rest of the exogenous variables g
(T)
k ∀k ̸= k′ are

truncated by this maximum value corresponding to k′.
To leverage information from the source domain S, we
replace the dirac-delta prior by a mixture of the source
and target transition statistics (see Sec. 4.1).

The Gumbel-Max SCM. Oberst and Sontag (2019)
introduced the Gumbel-Max SCM, which ensures that
counterfactual queries preserve observed outcomes
(defined as counterfactual stability). In a Gumbel-
Max SCM all nodes X are discrete random variables
with causal mechanisms:

Xi := argmax
j

log p(Xi = j|PAi) + gj (1)

given independent Gumbel variables
g = {g1, g2, . . . , gk}. These structural equa-

2. https://cmaddis.github.io/gumbel-machinery

tions effectively embed the Gumbel-Max trick. We
parametrize the state transition mechanism of the
POMDP using the formulation of Eqt. 1. This means
that exogenous variables are restricted to Gumbel
variables such that US ≜ g (for all time-steps).

To ensure counterfactual expectations E[R(τ)|do(π)]
are identifiable from observational data from policy µ,
we need an additional property called Counterfactual
Stability:

Definition 1 Counterfactual Stability An SCM over dis-
crete random variables is counterfactually stable if:

p′i
pi
≥

p′j
pj
⇒ P do(I′)|XI=i(X = j) = 0, ∀j ̸= i

where pi = p(XI = i) and p′i = p(XI′ = i).

Defining the structural equations in this manner acts
as a constraint on the POMDP, enforcing counterfac-
tual stability (by definition of Gumbel-Max SCMs)
when considering alternative state transitions. This
ensures that inferred patient outcomes change only
when the relative likelihoods also change. Our coun-
terfactual regularization further maintains this prop-
erty when sampling counterfactual trajectories in the
target domain after incorporating source transition
estimates, outlined in Sec. 4.1. In effect all interme-
diate quantities remain estimable from offline data,
allowing principled offline transfer.

4. Counterfactually Guided Policy
Transfer

In this section we introduce a framework for trans-
ferring learned treatment policies in offline settings;
meaning we only have access to sequences of observa-
tions (trajectories) τ without the ability to interact
with the intended target domain. By modeling the
common generative process between domains with
a causal mechanism we are able to constrain policy
learning in the target to refrain from unsafe behaviors,
even when presented with a different and unknown
mixture of patient sub-populations.

We now formalize the transfer setting. First, we as-
sume that patients in the source and target domains
have comparable health conditions. The primary shift
between domains is in the composition of patient sub-
populations. That is, we have different proportions of
patient types (e.g. the proportion diabetic patients)
in each. We assume that the population composition

4
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is unknown, creating unobserved confounding in the
underlying causal system.

We assume that the data has been collected previously
in the source domain S with some unknown behavioral
policy µ and that an optimal treatment policy π(S) has
been learned. Further, we assume that the empirical
transition matrix, P (S), is accessible. Empirical tran-
sition statistics P (T) in the target are also available.
We demonstrate that a learned treatment policy in T

can be improved by 1) appropriately leveraging P (S)

to improve counterfactual transition estimation in T

and 2) regularizing π(T) by π(S).

In Sec. 4.1 we motivate that data-scarcity and unob-
served confounding in T induces model misspecifica-
tion, requiring careful regularization of the transition
statistics. We propose a stochastic regularization pro-
cedure to alleviate challenges of naively transferring
P (S). Our main theoretical contribution demonstrates
that this procedure maintains counterfactual stability.
In Sec. 4.2 we outline a second form of regularization
to stabilize policy learning in T, to avoid overconfi-
dence in regions of little support. These concepts
are combined in Sec. 4.3 to introduce our proposed
transfer framework for offline, off-policy RL, Counter-
factually Guided Policy Transfer (CFPT).

4.1. Counterfactual Regularization

When membership information of patient sub-
populations are known, specific estimates of the tran-
sition statistics can be obtained in both domains.
However, if the statistical bias in these estimates in
T is larger for some sub-population, naive regular-
ization from S can only guarantee improvement for
the sub-group with more accurate estimates in S (see
Appendix B.1).

To improve estimates of the transition statistics P (T),
we need to collect more data from the appropri-
ate counterfactual distribution i.e. P do(I′(µ→π))|I(µ).
Since naive regularization of P (T) is insufficient, we
leverage exogenous variables in T (the Gumbel vari-
ables) related to P (T). According to the SCM for-
mulation, the true posterior over these variables is
completely described by the true, yet unknown, tran-
sition probabilities. Thus estimates of P (T) can be
refined by improving the posterior estimates of the
Gumbel variables in the “Abduction” step. The transi-
tion statistics P (S) are used to improve these posterior
estimates which are then used to infer the Gumbels

Algorithm 1 Modified Top-down with informative prior

1: Repeat each step of a counterfactual rollout, infer τ i

2: Note: - logP (S)(s′|s, a) = logα(S)

3: - log α̂(T) are counterfactual stats via policy π
4: - Sampled observation k′

5: Mixture-Topdown(SCM M, logα(S), logα(T),
log α̂(T), mixture param wT, N ′)

6: // Gather a batch of counterfactual trajectories
7: for n′ = 1, . . . , N ′ do
8: ρ ∼ Bernoulli(w(T))
9: logα = ρ logαT + (1− ρ) logαS

10: gcf = Topdown(logα, 1, k′)

11: Sn′
cf = argmaxj log α̂

(T) + gcf
12: end for

13: P̂ (T) is the empirical estimate using {Sn′
cf}N

′
n′=1

in T. This is done with a stochastic mixture of the
estimated statistics from both domains.

Our key insight is that this stochastic regularization
is helpful even if the mixture membership information
is not known. In this case, a composite transition es-
timate is obtained in both S and T (instead of for each
sub-population) which enables a guided sampling pro-
cedure in T instead of merely relying on P (T).

Concretely, we we estimate and employ the poste-
rior p(g(S)|τ (S)) from S as an informative prior for
the target domain, i.e. p(g(T)) = p(g(S)|τ (S)). This
prior is incorporated in a way that maintains coun-
terfactual stability in T, allowing estimation of the
expected rewards in the target domain under any can-
didate policy from observational data collected locally
from a different policy µS. Normally, sampling dis-
crete state outcomes from transition dynamics when
parametrized as Gumbel-max variables leverages a
sampling procedure known as Top-down sampling.
This sampling procedure is a key component for esti-
mating the expected rewards of a policy in the target
domain. We ensure stability by carefully designing
a modified Top-down sampling procedure (Maddison
et al., 2014) when sampling from the posterior over
Gumbels g(T), i.e.,

p(g(T)|τ (T), P (S)) ∝ p(τ (T)|g(T))p(g(T))

= p(τ (T)|g(T))p(g(S)|P (S))

given some observed trajectory τ (T). The prior p(g(T))
corresponding to some state-action pair s, a is given
by ps,a(g

(T)) =
∏K

i=1 flogP (S)(S′=i|S,A)
(gi), where flogα

is the density of a Gumbel random variable.
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Figure 2: Graphical overview of counterfactually guided policy transfer (CFPT), as introduced in this section.
Elements from the source domain are used to improve counterfactual inference (CFI) and regularize policy
learning within the target domain.

To leverage the prior from S we impose a mixture
parametrization over the posterior Gumbel distribu-
tion conditioned on an observation k′ (in T):

p(g
(T)
1 , . . . , g(T)n |k′) =w(T)p(g

(T)
1 , . . . , g(T)n |logP (T), k′)

+w(S)p(g
(T)
1 , . . . , g(T)n |logP (S), k′)

(2)

where w(S) = 1 − w(T). The mixture weight w
(w < 1) is treated as a hyper-parameter determin-
ing the amount of regularization provided by S. This
results in a modified Top-down sampling procedure,
summarized in Alg. 1. Specifically, line 8 is used
to select the Gumbel component from S or T with
probability w(T). This component is then provided to
sample the Gumbels, given observation k′ from T (line
10). The sample is then used to infer counterfactual
states under observation k′, ensuring counterfactual
stability (line 11). This modified Top-down sampling
procedure provides stable counterfactual trajectories
in T via regularization from S to form a batch of data
to refine a treatment policy π̂(T) from. The resulting
trajectories can be used to re-estimate transition dy-
namics in the target domain (Alg. 2, line 7) and can
also be thought of as a form of stable exploration in
T.

Lemma 2 The mixture-prior with Modified Top-
down sampling preserves counterfactual stability.

Proof Counterfactual stability is invariant to the
choice of prior so long as the gumbel samples are fixed
across interventions. Our modified Top-down sam-
pling procedure ensures this. Hence, counterfactual

stability is preserved through regularization. The com-
plete proof is in Sec. A.4 in the Appendix.

4.2. Regularized Policy Iteration

The sampling procedure outlined in Section 4.1 allows
improved estimation of the target domain transition
dynamics and evaluation of counterfactual rewards for
candidate policies being considered for improvement.
Policy iteration (PI) switches between evaluation and
improvement steps that estimate then refine a value
function V and greedy policy π. Thus, the evalua-
tion stage of PI can leverage our modified sampling
procedure. Generally, PI may not optimally converge
if the MDP is partially observed (e.g. when critical
sub-population information is unknown) (Sutton and
Barto, 2018). When learning a policy π(T) in the
target domain, the counterfactually sampled batch
of trajectories improve the accuracy of the transition
matrix used in the evaluation step of PI. However,
acting greedily with respect to the inferred value func-
tion may encourage poor behavior. To guard against
overconfident value estimates, we regularize the policy
improvement step by π(S).

We regularize PI (RegPI) in T through minimizing
the KL-divergence between the policy distributions
over actions, conditioned on the observed state. Due
to the discrete and finite causal framework we use
to model P (T), the KL regularization is equivalent
to log-aggregation (Heskes, 1998). This approach is
also functionally equivalent to the behavior regular-
ization found in recent offline RL algorithms such as
BRAC (Wu et al., 2019) and CRR (Wang et al., 2020).
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In this work the policies are not parametrized, so this
regularization directly modifies the action distribution
rather than constraining gradient updates.

Within the policy improvement step a proposal distri-
bution ν(·|s) over the actions is generated:

ν(·|S) = 1

Zp

(
R(S, ·) + γ

(
P̃ (T)(S′|S, ·)⊗V(S′)

))
(3)

where Zp is a normalization constant and the operator
⊗ is used to indicate a Matrix-vector product such
that V (S′) is combined with P̃ (T)(S′|S, ·), for each
action and possible successor state S′. We then seek
the policy that minimizes the divergence between
ν(·|S) and π(S)(·|S). That is,

π
(T)
k−1 = argmin

π
λ KL(π∥ν) + (1− λ) KL(π∥π(S)) (4)

where λ is a hyperparameter, selected empirically to
determine how much π(S) influences π(T). The deriva-
tion of Eqt. 4 and how it is fully implemented are in-
cluded in the Appendix (see Sec. C and Alg. 3).

4.3. Counterfactual Policy Iteration

Algorithm 2 Counterfactual Policy Iteration

1: CF-PI(SCMM, π
(T)
0 , π(S), P (S))

2: for k = 1, . . . ,K do
3: // Gather a batch of counterfactual trajectories
4: {hi}Ni=1 ∼ H(T) ⊂ T
5: {τ i}Ni=1 = CFI({hi}Ni=1,M, I(µ → π

(T)
k−1), T , P

(S))

6: // Estimate transition stats P̂ (T) from {τ i}Ni=1

7: P̃ (T) = 1
ZT

(
η P (T) + (1− η) P̂ (T)

)
8: // Regularized policy iteration with P̃ (T)

9: π
(T)
k ← RegPI(π

(T)
k−1, γ, P̃

(T), π(S), λ)

10: end for

We introduce counterfactually augmented policy it-
eration (CF-PI), the core method of our proposed
CFPT framework, the major components of which
have been outlined in the previous two subsections.
CF-PI is visualized in Figure 2 and outlined in Alg. 2.
When learning a policy in T, where a limited num-
ber of trajectories H(T) have been collected with an
unknown behavior policy µ(T), we assume access to
an optimal policy distribution π(S) as well as tran-
sition statistics P (S) from a relevant source domain.
In practice P (S) may correspond to expected patient
physiological responses to treatment while π(S) reflects
known treatment protocols.

CF-PI is performed over K iterations where, in each
iteration, a batch of counterfactual trajectories {τ i}

from T (Sec. 4.1)—sampled according to the current
policy π

(T)
k−1—are used to augment the transition statis-

tics P (T). This augmentation (Alg. 2, line 5) is a re-
normalized weighted sum between the observed P (T)

and P̂ (T) estimated from {τ i}. The parameter η is
empirically chosen (see Sec. E.2.1 in the Appendix) to
heavily favor observed transition statistics while still
incorporating added diversity through counterfactual
sampling. ZT is the normalizing constant over all
successor states S′ = s′ from any given state s. P (T)

is then used in regularized Policy Iteration (RegPI,
Sec. 4.2) to update the policy π

(T)
k . RegPI is run to

convergence or for a set number of iterations. The
resulting policy π

(T)
k is used to sample additional coun-

terfactual trajectories at the beginning of the next
iteration.

We describe the full CFPT procedure in extensive de-
tail (including complete psuedocode) in the Appendix,
Sec. D.

5. Experimental Setup

We demonstrate the benefits of CFPT through a
simulated task of providing treatment to septic pa-
tients (Oberst and Sontag, 2019). We construct do-
main shift in the simulator by varying the proportions
of diabetic patients between S and T. Diabetic pa-
tients are more challenging to treat due to increased
stochasticity in their glucose levels following treat-
ment. Discharge (reward of +1) occurs when all vitals
are ‘normal’ and treatment is discontinued; death
(reward of −1) occurs if any three of the vitals are
simultaneously not ‘normal’.

Baselines:

Since generalization is guaranteed when all confound-
ing is observed (Wen et al., 2014), we hide diabetes
status, inducing unobserved confounding. This mim-
ics realistic clinical settings where relevant information
may not be immediately available. We intend to verify
the robustness of CFPT in the target domain T even
when the regularization procedure is not guaranteed
to be counterfactually stable (i.e. in the presence
of unobserved confounding). We compare to several
baselines: i) Scratch, the policy π(T) is learned using
policy iteration (PI) solely from the observed trajec-
tories H(T). ii) Pooled pools the observed H(S) and
H(T) to learn π(T), analogous to naive regularization
of P (T) by pooling data. iii) Blind applies π(S) in T

without adaptation.
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We also compare CFPT to two ablations showcasing
the benefits of each contribution outlined in Sec. 4.
iv) RegPI omits counterfactual trajectory sampling,
only regularizing π(T) by π(S) (cf. Sec. 4.2), which
is functionally equivalent to the tabular setting of
CRR (Wang et al., 2020). v) Red. CFPT is a re-
duced form of CFPT where we omit the informative
prior from S when sampling counterfactual trajecto-
ries. Here, the counterfactual trajectories are drawn
according to the Gumbel variables from T only. Policy
learning is then completed with RegPI. All settings
used to train these policies are included in the Ap-
pendix, Sec. E.

Setup: The behavior policy µ was found using PI with
full access to the MDP (including diabetes state) to
provide a strong observation policy, following (Oberst
and Sontag, 2019). When generating the observed
trajectories H, the policy takes random actions w.p.
0.15 to introduce variation. Within S, |H(S)|= 10000,
with at most 20 steps per trajectory, where the proba-
bility of a trajectory coming from a diabetic patient is
0.1. We limit |H(T)|= 2000 and shift the patient dis-
tribution to include a varying proportion of diabetic
trajectories in range [0.0, 1.0] in 0.1 increments.

To avoid extrapolation error (Fujimoto et al., 2019)
when learning π(T), all estimated transition statis-
tics corresponding to actions not found in the data
are zeroed out and the empirical transition matrix is
renormalized. Further, the PI procedure is penalized
when unsupported actions are taken; the trajectory is
terminated and a negative reward is returned.

We evaluate the performance of CFPT when:

• Varying the amount of domain shift in T, demonstrating
that CFPT performs well relative to the baselines even
as the patient distribution in T is shifted farther from S.

• Varying the size of the patient cohort in T, evaluating
how data-scarcity affects the observed benefit of CFPT.

6. Results

6.1. CFPT is Robust Under Domain
Shift

We evaluate CFPT and the baselines defined on sev-
eral settings of T where the proportion of trajectories
gathered from of diabetic patients in H(T) is increased
in increments of 0.1. The prevalence of diabetic pa-
tients and with few trajectories, the estimated tran-
sition statistics P (T) are far from the truth. This

Figure 3: Comparison of CFPT with the defined base-
lines when varying the proportion of diabetic
patients in T. The black line denotes the ob-
served optimal behavior with full knowledge.

provides an opportunity to demonstrate the benefits
of careful transfer from the source domain S.

6.1.1. Robustness of CFPT
improvement

Figure 3 shows the average reward when applying the
learned π(T) to simulate an additional 5000 trajectories
across the various shifts in patient population in T.
The performance of π(T) learned with the various
baseline strategies is presented alongside the observed
optimal behavior µ(T) (with full knowledge of patient
state) as the solid black line. The benefits of CFPT
(in blue) are clear across all levels of domain shift, with
significant performance improvement when mixture
populations in T are the furthest from S.

Diabetic patients are harder to treat in this simula-
tor, resulting in a decreasing trend in average reward
as the proportion of diabetic patient trajectories in-
creases. For CFPT, the advantages of leveraging πS

in a domain distributionally similar to S (pDiab= 0.3)
are clear. However, in domains T where the patient
distribution is shifted far from S, CFPT achieves sim-
ilar policy improvements. The clearest advantage of
CFPT is when T has a majority of diabetic patient
trajectories. This demonstrates that the causal frame-
work and use of counterfactual regularization provide
significant benefits when transferring from S. Overall,
this quantitative evaluation is a strong indication of
the benefits of our proposed two-fold regularization
when faced with domain shift between domains.

8
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Figure 4: Comparison of estimated reward in T between
CFPT, baselines and, ablations as outlined in
Sec. 5. 95% uncertainty intervals are found via
100 bootstrapped samples of the 5000 trajecto-
ries generated with the learned policy π(T).

6.1.2. Ablation Study for CFPT

In Figure 4 we view the performance of CFPT, the
baselines, and ablations in a setting of T with a
0.8 proportion of diabetic patient trajectories. The
Pooled and Blind baselines provide significant im-
provements over Scratch. With each additional
contribution we make in the development of CFPT
(RegPI → Red. CFPT → CFPT) policy performance
steadily improves and approaches the observed return
of the optimal behavior policy derived with complete
knowledge of MDP and patient diabetes state.

Recall that the RegPI ablation is functionally equiva-
lent to the recent state of the art offline RL method
CRR (Wang et al., 2020). The observed improve-
ment over this algorithmic approach demonstrates the
value of our proposed regularization for counterfactual
trajectory sampling. This further validates the use
of causal mechanisms when constructing a transfer
approach for offline RL settings.

6.1.3. Off-policy Evaluation

The off-policy evaluation (OPE) of policies learned
from fixed data, without the ability to independently
test them is a challenging part of offline RL, and has
been understudied in partially observed settings (Ten-
nenholtz et al., 2020). Importance Sampling (IS) can
provide an estimate of policy performance with low
bias for OPE (Thomas, 2015), which is desirable in a
transfer setting. While we focus on true rewards as
our primary evaluation in this paper, we provide OPE

estimates in this section for completeness. For this, we
use weighted importance sampling (WIS) (Mahmood
et al., 2014) to evaluate our transfer policies due to its
consistency properties. In the Appendix, Sec. E.3.3
we use a counterfacutally determined OPE method,
CF-PE (Oberst and Sontag, 2019), to qualitatively
evaluate learned policies.

OPE estimates generally exhibit significant overcon-
fidence in expected rewards, as areas of high reward
are erroneously extrapolated over unseen regions of
the state space. We report the results of evaluating
WIS for the learned policies π(T) in Table 1 including
comparisons to learning a policy in T where the dia-
betic status is known (“Full Obs.”), through Behavior
Cloning (“BC”) and what the observed reward of the
behavior policy µ(T). These results are provided for
the setting of T with a 0.8 proportion of diabetic pa-
tient trajectories. As expected, WIS overestimates
the true RL return in T, even with poor policies (i.e.
Scratch). However, we see some semblance of improve-
ment with each component of our proposed CFPT
approach. However, the unreliability of these OPE es-
timates make it difficult to truly evaluate the benefits
of transfer with counterfactual regularization.

Approach True RL Reward WIS Reward

Scratch −0.7398± 0.007 0.6388± 0.584
Pooled −0.4808± 0.012 0.9782± 0.004
Blind −0.3915± 0.013 0.5874± 0.113

RegPI −0.3366± 0.012 0.6266± 0.057
Red. CFPT −0.2116± 0.010 0.7689± 0.077

CFPT −0.1491± 0.011 0.7333± 0.004

Full Obs. −0.0877± 0.012 0.9037± 0.054
BC −0.2078± 0.0109 0.9836± 0.002

Obs. µ(T) 0.1486± 0.018 –

Table 1: Numerical values corresponding the policy per-
formance results presented in Figure 4.

Fortunately, CF-PE allows for the comparison of indi-
vidual counterfactual trajectories influenced by CFPT
and other methods. This form of introspective eval-
uation can help identify glaring safety issues for de-
ployment of a trained policy in a new domain. As
seen in the Appendix, Sec. E.3.3, CFPT acts more
conservatively and closely approximates the observed
behavior, leading to more stable performance.
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Figure 5: Performance improvement via transfer ap-
proaches over the naive Scratch baseline with
respect to the number of trajectories available
in T. CFPT provides significant improvement
when the size of the target domain is small
relative to source domain.

6.2. CFPT Demonstrates Improvement
Among Various Levels of Data-Scarcity
in T

The benefits of transfer may vary as more or less data
is available in the observed H(T). Characterizing this
benefit can aid understanding of the levels of regular-
ization one should use for transferring from S. This is
particularly important when T may feature a signifi-
cantly shifted data distribution, as we have simulated
in this paper. Figure 5 demonstrates the improvement
of different transfer approaches over a Scratch policy
as the size of H(T) changes. We evaluate the effects
of transfer when |H(T)|∈ {500, 2000, 5000, 10000} with
pDiab = 0.8. When very few samples are available,
transfer does not reliably improve over Scratch, since
there is little data to refine π(S) with. As more samples
are available, clear benefits are observed from transfer,
with more than a 3x improvement when using CFPT.
These benefits diminish as more data is available in T,
allowing for an effective policy to be learned natively.
We further analyze these policy improvements for the
diabetic and non-diabetic sub-populations of T in the
Appendix, Sec. E.3.1.

6.3. Quality of Counterfactual Samples

We chose to use the Gumbel-Max SCM to initiate this
version of our CFPT framework because it guarantees
that counterfactual samples will lie within the support

of H(T). It is not merely a qualitative formulation,
as it provides stable sampling characteristics. We
quantify the quality of these counterfactual samples
by comparing i) target domain samples (collected with
unknown µ(T )) and ii) target domain counterfactual
samples using P (S) as a prior. In Figure 6 we compare
the features when diabetes status is unobserved (a
corresponding analysis when the diabetes status is
observed can be found in the Appendix, Sec. E.2.2).
The counterfactually sampled data (on right) provides
better coverage of the features while also not overly
reducing the relative balance within the distribution
of each feature. This helps to confirm the validity of
using the counterfactually sampled trajectories when
improving the robustness of the learned π(T).

Figure 6: Feature distributions of the observed data
(on left) and counterfactual samples (on
right) with unobserved confounding

7. Conclusion

Motivated by challenges of policy transfer in offline,
off-policy clinical settings, we have introduced Coun-
terfactually Guided Policy Transfer. This proce-
dure leverages complementary elements of a data-rich
source domain S to facilitate better learning in a data-
scarce target domain T. In our transfer framework
we utilize: 1) The observed transition statistics P (S)

and 2) the trained treatment policy π(S) to guide de-
velopment of an effective policy π(T). By carefully
designing transfer policies under restricted settings
between domains we provide a principled justification
for both the counterfactual and policy regularization
frameworks we propose. In clinical practice, P (S) may
correspond to expected patient physiological responses
to treatment while π(S) reflects known treatment pro-
tocols. Both these elements can be feasibly shared in
a secure manner and, as demonstrated by this work,
used to improve treatment policy development.
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In future work, we plan to adjust the regularization
policies adaptively, based on the uncertainty of the
transition statistics and treatment selection process.
The work we have presented in this paper stands as
an initial step in the development of counterfactually-
aided policy transfer to reliably extend learned models
beyond the domain they were trained in. While the
discrete setting we have used in this work is suit-
able for a proof of concept, we intend to broaden the
theoretical foundation supporting our procedure to
admit continuous state spaces and treatments. This
will support policy development using retrospective
data derived from electronic medical records, moving
us one step closer toward positively contributing to
clinical practice.

Institutional Review Board (IRB)

The research presented in this paper provides a proof
of concept for a novel policy transfer method and is
validated on simulated data. As such this research
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Appendix A. Background: SCM

A.1. Structural Causal Models Pearl
(2009)

A structural causal model M describes the causal
mechanisms driving a system. It consists of an or-
dered triple ⟨U,X,F⟩; a set of independent exoge-
nous random variables U = {U1, U2, . . . , Uk} that
represent factors of variation outside the model, X
comprises the endogenous variables modeled in the
causal system and, the set of functions F defined by
Xi := fi(PAi, Ui) ∀i where PAi ⊆ X \ Xi govern
the causal mechanisms. PAi are the parents of Xi

in a causal DAG G. The framework attributes proba-
bilistic Markov assumptions to the joint distribution
PMassociated with the variables (X,U) in the graph.
This characterizes a probability distribution, implying
that one can observe samples true to the underlying
causal graph and mechanism.

Definition 3 Interventional Distribution: An inter-
vention I in an SCM M consists of replacing some
functions fi(PAi, Ui) with a different governing causal
mechanism f I

i (PAI
i , Ui) where PAI

i are the parents

of Xi in a new DAG GI . Note that the interventional
distribution does not change the exogenous mecha-
nisms driving the system. The resulting SCM, de-
noted by Mdo(I) has a new joint distribution denoted

by PMdo(I)

.

An intervention I is generally used to evaluate the
prospective effect of perturbing the underlying causal
mechanism. A more useful quantity in off-policy learn-
ing is the counterfactual which allows you to answer
the causal queries of the form: “what would have hap-
pened had we given the patient medication b having
observed no improvement with medication a?” An-
swering such retrospective queries requires inferring
a model of the exogenous variables P (U|X = x) and
intervene with I on a causal system with exogenous
noise priors p(U) replaced by p(U|X = x).

Definition 4 Counterfactual Distribution: Let Mx

correspond to the SCM where the exogenous noise
model p(U) in M is replaced by p(U|X = x). Inter-
vening with I on the resulting SCM Mx yields a new
SCM Mdo(I)|x and induces the joint counterfactual

distribution PMdo(I)|X=x

.

A.1.1. Connections between expected
counterfactual reward and
ACE/ATE

Naturally, to determine if a policy is better than a
behavior policy µ, the quantity of interest is the differ-
ence in expected rewards between the behavior policy
µ and another policy π. In causal inference literature,
this is analogous to evaluating average treatment ef-
fect (ATE) under soft interventions in the underlying
causal model. In our case this is a POMDP repre-
sented as a Structural Causal Model (SCM). Specif-
ically, ATEπ = E[R(τ)|do(π)] − E[R(τ)|do(µ)] a quan-
tity that can be interpreted as an outcome in the
SCM. Note again that in off-policy settings, the first
expectation term is obtained under the distribution
P do(I′(µ→π))|I(µ) i.e. with modified posteriors over
exogenous variables.

A.2. Gumbel-Max SCM Oberst and Sontag
(2019)

Definition 5 Gumbel-Max Trick: a sampling proce-
dure from any discrete distribution with k categories,
parametrized by pi = P (X = i),∀i ∈ {1, 2, . . . , k}.
First, sample k independent Gumbel variables gj
with location 0, scale 1. Set the sampled outcome
k = arg maxj log pj + gj.
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A Gumbel-Max SCM is one in which all nodes X
are discrete random variables. Given independent
Gumbel variables g = {g1, g2, . . . , gk}, the causal
mechanisms are given by: Xi := fi(PAi, gi) =
arg maxj log p(Xi = j|PAi) + gj .

Non-identifiability of causal effect estimation under
counterfactual scenarios is challenging for reliable
transfer. That is, there may be multiple SCMs con-
sistent with observations that provide different coun-
terfactual estimates. In order to reliably draw causal
conclusions from a counterfactual query, which is what
we will need, further assumptions are required. In
the case of binary SCMs, this assumption is given by
the monotonicity condition Pearl (2009) and in the
discrete case known as counterfactual stability.

Let P do(I)(Y = i) = pi ∀i ∈ [L] and P do(I′)(Y =
i) = p′i ∀i ∈ [K]. Let P do(I)(X = i) be the proba-
bility of observing i under intervention I for variable
X in a discrete SCM and the observed outcome be
represented by XI . Then P do(I′)|XI=i(X = j) is the
counterfactual probability of observing outcome j hav-
ing observed i under intervention I.

A.3. Gumbel-Max Topdown Sampling

The Gumbel-Max trick enables sampling from categor-
ical distributions Cat(α1, . . . , αK), where the category
k will be selected with probability αk among K dis-
tinct categories (Hazan and Jaakkola, 2012; Maddison
et al., 2014, 2016). This sampling procedure rests on
inferring Gumbel variables gk that can be transformed
into these probabilities αk.

The density of Gumbel variables with location param-
eter logαk and scale 1 is:

flogαk (gk) = exp (−gk + logαk) exp (− exp (−gk + logαk))

= exp (−gk + logαk)Flogαk (gk),

(5)

where Flogαk
(gk) is the CDF of the Gumbel variable

gk. Without any prior on the Gumbel variables g
(T)
k ,

corresponding to the discrete patient states observed
in a target domain T, the location parameters can be
obtained according to the empirical transition proba-
bilities P (T). That is, p(α) = δ(logP T(·|·)) where δ is
the dirac-delta distribution. Sampling from this Gum-
bel given observation k′ can be done using the Top-
down procedure from Maddison et al. (2014).

Now consider the joint distribution of k′ and g(T) for
any fixed state-action pair (we drop explicit notation
for clarity). To account for the informative prior P (S),
we treat the locations of these Gumbel variables to be
random-variables α. To obtain the joint distribution,
we integrate over α:

p(k′, g
(T)
1 , . . . , g(T)n ) =∫

α

αk′

Z
flogZ(g

(T)
k′ )

∏
i ̸=k′

[
flogαi(g

(T)
i )

Jg(T)k′ ≥ g
(T)
i K

Flogαi(g
(T)
k′ )

]
p(α)dα

(6)

Equation (6) can be obtained exactly following3 Mad-
dison et al. (2014). That is, for a fixed and known
αk, the Gumbel corresponding to the observed out-

come k′, i.e. g
(T)
k′ is itself a Gumbel variable with

location parameter Z = log
∑K

k=1 αk. It follows that
the maximum value k′ and corresponding Gumbels
are independent and the rest of the exogenous vari-

ables g
(T)
k ∀k ̸= k′ are truncated by this maximum

value corresponding to k′. To leverage information
from the source domain S, we replace the dirac-delta
prior by a mixture of the source and target tran-
sition statistics (see Equation 2 in Sec. 4.1). The
sampling procedure follows a modified top-down pro-
cedure such that for every counterfactual sample, we
first select the mixture component with probability
[w(T), 1 − w(T)], followed by posterior sampling over
the Gumbels.

A.4. Mixture-prior preserves counterfactual
stability

Definition 6 Counterfactual Stability: An SCM over
discrete random variables is counterfactually stable if:

If we observe XI = i, then ∀j ̸= i, if
p′
i

pi
≥ p′

j

pj
, implies

that P do(I′)|XI=i(X = j) = 0.

Our proof is based on the insight that counterfac-
tual stability is invariant to choice of prior so long
as the gumbel samples are fixed across interventions.
Our modified topdown sampling procedure ensures
the same gumbel samples are used across interven-
tions. Hence we preserve counterfactual stability even
with regularization. For completeness, we include
the contrapositive proof of Oberst and Sontag (2019)
here:

As denoted before, let X
(T)
I = i (we drop T from super-

script for random variables when context is clear) be

3. https://cmaddis.github.io/gumbel-machinery
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the outcome observed under intervention (behaviour
policy) in the target domain. The state observation i
implies almost surely:

log pi + g
(T)
i > log pj + g

(T)
j ∀j ̸= i (7)

where pi := P (T)(X = i) is short hand for the state-
transition probabilities in the target domain induced
using the Mixture-prior described above. To prove
counterfactual stability, the contrapositive is proved

i.e. ∀j ̸= i, P do(I′)|XI=i(X = j) ̸= 0 =⇒ p′
i

pi
<

p′
j

pj
.

To begin with, if P do(I′)|X(T)
I =i(X(T) = j) ̸= 0 implies

that there exist gumbel variables g
(T)
i and g

(T)
j such

that:
log p′i + g

(T)
i < log p′j + g

(T)
j (8)

where p′j := P do(I′)|XI=i(X(T) = j). Since gumbels
sampled for Equation (7) and (8) are fixed, there must
exist gumbels that satisfy both equations. The only
difference is that an informative prior is imposed on
these gumbels is different. Thus counterfactual sta-
bility is not violated due to the mixture prior and
modified gumbel procedure. Combining the inequali-
ties and re-arranging, we establish the contrapositive
with regularization.

Appendix B. Estimating
counterfactual rewards
with informative
prior

Our proof largely follows Oberst and Sontag (2019)
and Buesing et al. (2018) although with a different
posterior on the Gumbel exogenous variables. We
make the difference explicit in the following: µ(T) be
the behavior policy in the target environment and the

corresponding trajectories denoted by τµ
(T)

. Let π(T)

be a candidate policy for which expected rewards are

to be estimated and τπ
(T)

be the counterfactual tra-
jectories using conditional posteriors p(U(T)|τ ) over

exogenous variables U(T). τπ
(T)

is a deterministic
function of U(T). The prior distributions over U are
pπ(U(T)) = pµ(U(T)) = p(U(T)) (which remains the
same as any informative prior coming from the source
environment imposed in this framework). We drop
the notation (T) in the following as we are only con-
cerned about the target environment hereon. Source

distributions, if any, will be made explicit. Expected
reward is then given by:

Epπ [R(τ)] =

∫
u

R(τ(u))pπ(u)du (9)

=

∫
u

R(τ(u))pµ(u)du (10)

=

∫
u

R(τ(u))

(∫
τ

pµ(τ,u)dτ

)
du (11)

=

∫
u

R(τ(u))

(∫
τ

pµ(u|τ)pµ(τ)dτ

)
du

(12)

=

∫
τ

∫
u

R(τ(u))pµ(u|τ)pµ(τ)dudτ (13)

= Eτπ∼pµ(τ)

[ ∫
u

R(τ(u))pµ(u|τ)du

]
(14)

= Eτπ∼pµ(τ)

[
Eu∼pµ(u|τ)[R(τ(u))]

]
(15)

Where note that Equation (11) integrates over ob-
served policies only. This allows to swap integrals in
Equation (13). The key difference is that in Equation
(15), for the subset of exogenous variables g(T) ⊆ u(T),
the posterior is inferred by incorporating the mixture
prior that helps regularize from the source.

B.1. Justification of Counterfactual
Regularization

We consider two subpopulation groups (diabetic) and
(non-diabetic) and the corresponding transition dy-
namics Pd(S|S,A) and Pnd(S|S,A). We justify our
counterfactual regularization using two cases i) where
diabetes status of the patient is known in both source
and target environment, ii) diabetes status is unknown
in both source and target. We assume here that the
statistical bias in the estimated transition estimates
of diabetic patients P̂

(S)
d (S|S,A) and P̂

(T)
d (S|S,A) is

higher in the source domain than in the target do-
main (by virtue of number of samples from this sub-
population observed in both domains). The effect is
the opposite for non-diabetics. i.e. the bias is lower
in the source than the target domain. That is:

∥P̂ (S)
d (S|S,A)−Pd(S|S,A)∥

≥ ∥P̂ (T)
d (S|S,A) − Pd(S|S,A)∥

(16)
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∥P̂ (S)
nd (S|S,A)−Pnd(S|S,A)∥

≤ ∥P̂ (T)
nd (S|S,A) − Pnd(S|S,A)∥

(17)

Under this setting, consider a vanilla regularization in
the target-domain for the transition statistics where
we use a convex combination of source and transi-
tion estimates for each sub-group instead of using
the target-domain estimates only (analogously for

the non-diabetic subgroup): ηP̂
(S)
d (S|S,A). + (1 −

η)P̂
(T)
d (S|S,A) where 0 ≤ η ≤ 1.

Then the statistical bias for the non-diabetic group is
given by:

∥Pnd(S|S,A) − ηP̂
(S)
nd (S|S,A) + (1 − η)P̂

(T)
nd (S|S,A)∥

=∥ η (Pnd(S|S,A) − P̂
(S)
nd (S|S,A))

+ (1 − η)(Pnd(S|S,A) − P̂
(T)
nd (S|S,A))∥

≤ η ∥P̂ (S)
nd (S|S,A) − Pd(S|S,A)∥

+ (1 − η)∥P̂ (T)
nd (S|S,A) − Pnd(S|S,A)∥

≤ η ∥P̂ (T)
nd (S|S,A) − Pnd(S|S,A)∥

+ (1 − η)∥P̂ (T)
nd (S|S,A) − Pnd(S|S,A)∥

= ∥P̂ (T)
nd (S|S,A) − Pnd(S|S,A)∥

(18)

The regularization from the source, done naively, will
benefit the non-diabetic group. However this is not
necessarily the case for the diabetic group (notice
that the bias can demonstrated to be better than the
source environment). However, since diabetics are
the majority subpopulation in the target, such naive
regularization is insufficient. Consider instead the
exogenous variables corresponding to the transition
dynamics model, specifically the Gumbel variables.
The Gumbel variables in the source and the target

are essentially parameterized by the log P̂
(S)
d (S|S,A)

and log P̂
(T)
d (S|S,A) respectively (similarly for the

non-diabetic population when the status is known).
Intuitively we are essentially replacing the determinis-
tic regularization above with a stochastic one where
the so that the sampled Gumbels can still be uti-
lized under the true dynamics of the target domain
to generate counterfactual trajectories. Thus, our
Mixture-top-down sampling can be considered as a
variational/stochastic procedure to the naive regu-
larization procedure. Notably, the stochastic proce-
dure decouples the transition dynamics regularization

into two steps, i) sampling Gumbels with potentially
biased transition estimates, and ii) augmenting tra-
jectories according to the true target dynamics that
improves statistical estimation of the dynamics in the
target.

These same insights hold true when diabetes status
is not known i.e. in the presence of unobserved con-
founding, except that a cumulative transition statistic
is available instead of separate estimates for each sub-
population.

Appendix C. KL-aggregation for
CF-PI

For discrete action space, KL-aggregation for regular-
ization over policy is equivalent to log-aggregation Hes-
kes (1998). The proof here is provided for complete-
ness. Consider the following aggregation setup over
two discrete distributions:

π = arg min
π

λKL(π ∥ ν) + (1 − λ)KL(π ∥ π(S))

(19)

This can be posed as a parametric minimization over
the vector π ∈ ∆K−1 (where K is the dimensionality
of the action space) as follows:

arg min
π

λ⟨πT , log π − log ν⟩ + ⟨πT , log π − log πS⟩

s. t. π ∈ ∆K−1

(20)

Equation 20 is convex in π with a convex (simplex)
constraint. Simply writing out the Lagrangian, pro-
vides:

arg min
π

λ ⟨πT , log π − log ν⟩ + ⟨πT , log π − log πS⟩

+ µ (

K∑
k=1

πk − 1) + βπ

where β ≥ 0

(21)

Taking the gradient and setting to 0 yields:

(1 + log π) + µ1 + β = λ log ν + (1 − λ) log πS (22)

If 1 +µ1+ β = 0, then log π = λ log ν + (1−λ) log πS

and the simplex constraint is satisfied.
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Algorithm 3 Counterfactually Guided Policy Transfer

1: // Counterfactual inference (CFI) with source environment prior

2: CFI(data x̂o, SCMM, intervention I, query Xq, prior X
(S)
P )

3: û ∼ p(u|x̂o) {Sample noise variables from posterior over latent parameters}
4: p(u)← δ(u− û) {Replace noise distribution in p with û}
5: fi ← fI

i {Perform intervention I}
6: return xq ∼ pdo(I)(xq|û) {Simulate from the counterfactual posterior over modelMI

x̂o
, Alg. 1}

7: // Regularized Policy Iteration (RegPI)
8: RegPI(current policy π(T), discount γ, aug. statistics P̃ (T), source policy π(S), reg. param λ)
9: Initialize V (s) for all s ∈ S

10: repeat
11: repeat
12: for each s ∈ S do
13: v ← V (s)

14: V (s)←
∑

s′ P̃
(T)(s′|s, π(T)(s))

[
R(s, π(T)(s)) + γV (s′)

]
15: end for
16: until convergence
17: for each s ∈ S do
18: ν(·|s)← 1

Zp

(
R(s, ·) + γ

(
P̃ (T)(s′|s, ·)⊗V(s′)

))
{Gen. a proposal dist. over actions}

19: π(T)(s)← argmaxa exp
{
λ log ν(a|s) + (1− λ) log π(S)(a|s)

}
{KL minimization, Eq. 22}

20: end for
21: until π(T) converges or after MAX˙ITERATIONS

22: // Counterfactual Policy Iteration (CF-PI)

23: CF-PI(SCMM, init. policy π
(T)
0 , source policy π(S), source statistics P (S), num. iters K, num. traj samples N ,

mixture param η)
24: for k = 1, . . . ,K do
25: // Gather a batch of counterfactually generated trajectories in the target environment
26: {hi}Ni=1 ∼ H(T) ⊂ T {Sample batch of trajectories from observed data}
27: {τ i}Ni=1 = CFI({hi}Ni=1,M, I(µ→ π

(T)
k−1), T , P

(S)) {Counterfactual rollouts under π(T)
k−1}

28: // Estimate empirical transition statistics P̂ (T) from {τ i}Ni=1

29: P̃ (T) = 1
ZT

(
η P (T) + (1− η) P̂ (T)

)
{Augment observed environment transition statistics}

30: // Regularized policy iteration with counterfactually augmented target env. transition statistics

31: π
(T)
k ← RegPI(π

(T)
k−1, γ, P̃

(T), π(S), λ)
32: end for

Appendix D. CFPT Procedure

Here we present the psuedocode (Algorithm 3) out-
lining our proposed Counterfactually Guided Policy
Transfer (CFPT) approach as discussed in this section.
CFPT is enabled by first having access to an optimal
treatment policy π(S) developed within a data-rich
source environment S as well as an estimation of the
transition statistics P (S) collected from observed data.
These methods combine to form a two-phase counter-
factual regularization approach for policy learning in
a data-scarce target environment T.

Policy learning is done through a counterfactually
regularized form of PI (CF-PI). The heart of CF-PI
rests on the discussion provided in Section 4.2 which
introduces how we regularize PI (RegPI) in the target
environment through KL-divergence log aggregation.
CF-PI is executed as follows. For K iterations, a
batch of trajectories {hi}Ni=1 observed within the tar-
get environment are sampled (Alg. 3, line 24). This
batch is used, along with the current policy within T,

π
(T)
k , and the prior over the transition statistics from

the source environment P (S) to generate counterfac-
tual trajectories {τ i}Ni=1 (Alg. 3, line 25 → CFI lines
1-6). This counterfactual sampling procedure, lever-
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aging the property of counterfactual stability within
Gumbel-Max SCMs, is described in Sections 4.1. The
batch of trajectories produced may exhibit some di-
versity in observed transition statistics from those
observed in T. To account for this, an augmented
transition matrix P̃ (T) is formed through a weighted
sum between P (T) and the empirically observed set
from {τ i}Ni=1 (P̂ (T), line 26). This augmented transi-
tion matrix is then passed to RegPI as discussed in
Section 4.2 (line 27 → RegPI, lines 7-21).

RegPI alternates between policy evaluation and policy
improvement steps. In policy evaluation (lines 11-15)

where the current policy π
(T)
k is used to refine an esti-

mate of the underlying value function based on the
observed rewards and estimated transition statistics
when applying π

(T)
k . Once this value estimate con-

verges, it is used in a form of a Bellman update (line
17) to generate a proposal distribution over actions
for each state. This is the beginning of the policy
improvement step (lines 16-19). After the proposal
distribution ν(·|s) is generated, it is used to estimate
the best policy while being constrained by the source
policy π(S) through KL-divergence log-aggregation
(line 18). This improved policy is then sent back to
the evaluation step to refine the estimate of the value

function and this process continues until π
(T)
k con-

verges or a maximum number of iterations has been
performed. With this updated policy, a new batch
of trajectories are sampled from H(T) to draw new
counterfactual samples and next iteration continues
to further optimize the target policy π(T ).

Appendix E. Additional Experimental
Details and Results

This section contains information about specific set-
tings used to learn our policies using the various base-
line approaches as well as the ablations and full CFPT
procedure. We also present additional experimental
findings in support of those presented in the main
body of the paper.

E.1. Baseline Policy Learning Settings

As mentioned, we use the coarse sepsis simula-
tor introduced by Oberst and Sontag (2019) which
can be found at https://www.github.com/clinicalml/

gumbel-max-scm. We make one major deviation from
their setting of the simulator in that we do not mask
out the observations of a patient’s glucose level. We

also adjust the initialized proportion of diabetic pa-
tients included in the population used to define an
experimental environment.

For all experiments and baselines, we fix the discount
rate γ to 0.99 and the maximum number of iterations
for each use of policy iteration to 1000. The number
of trajectories in the source environment S was fixed
to 10, 000 and the proportion of diabetic patients in
S was set to 0.1. All target environments T, indepen-
dent of the size of the diabetic subpopulation, were
represented with 2000 trajectories. Recall that any
indication of whether a patient has diabetes or not is
unobserved.

In the following subsections, we report any additional
parameter settings or adjustments to the learning pro-
cedure. All policy learning is done via Policy Iteration
(augmented as described in the paper) utilizing an
adjusted version of the pymdptoolbox library. Code to
replicate our experiments will be made available upon
publication of our paper.

E.1.1. Baselines

Random This baseline doesn’t explicitly learn a
policy. For evaluation, all action selection is done
by uniformly sampling between the 8 possible ac-
tions.

Scratch This non-transfer baseline constructs an
empirical transition matrix from the observed data
H(T) which is then used within policy iteration to
produce the policy π(T).

Pooled To pool the data between the environments
S and T we estimate the transition statistics using both
H(S) and H(T) which is then used to learn a policy with
Policy Iteration in the target environment T.

Blind This naive transfer baseline does not learn a
new policy, rather it blindly uses the policy π(S) from
the source environment without any adaptation or fine
tuning. In evaluation within the target environment,
actions are selected according to the distribution put
forward by the source policy.

E.1.2. Counterfactually Guided Policy
Transfer (CFPT)

CFPT When applying CFPT for learning a policy
in the target environment we needed to tune several
hyperparameters to set-up the best policy learning
environment within a data-scarce target environment
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T when transferring from a fixed source environment
(proportion of diabetic patients: 0.1). This involved
determining the best value for the number of itera-
tions K of CF-PI, the mixture weight for regularizing
the counterfactual sampling w(T), the weighting for
augmenting the observed transition statistics η, and
perhaps most importantly the weight for regularizing
the policy learning with λ. As w(T ), η and λ corre-
spond to linear combinations between two quantities,
we tested each of these hyperparameters between 0
and 1 in increments of 0.1, using the learned policy’s
true RL performance in the target environment to
compare between settings. We report the optimal
settings for learning within T in each target environ-
ment (diabetic proportion of population ranging from
0 to 1 in 0.1 increments) in Table 2. For all target
environments the number of iterations K for CF-PI
was 50.

E.1.3. Ablations

Reduced CFPT In this ablation of CFPT, we re-
moved the informative prior over the transition statis-
tics within counterfactual sampling. This effectively
removes this form of regularization that makes up
CFPT. All other procedures and operations within
CFPT were run as normal with the same parameter
settings as shown in Table 2 performing best.

Regularized Policy Iteration (RegPI) In this
ablation, we removed the sampling of counterfactual
trajectories completely from CFPT. We also removed
any batch sampling from H(T ), using instead the full
set of observed data within T. A single run of RegPI
was executed, using the top performing values for λ
as reported in Table 2.

E.2. Additional Results

In this section we present additional results that we
did not have space to include in the main paper as well
as an important additional analysis over the separate
subpopulations (diabetic vs. non-diabetic) among
the patients observed in the target clinical environ-
ment. In Table 3 we present the numerical values for
the comparison between CFPT and all baselines and
ablations shown in Figure 4.

E.2.1. Analysis of selecting η, affecting the
augmentation of P (T)

In Figure 7 we demonstrate the range of policy per-
formance under CFPT with CF-PI when varying the

parameter η. Recall from Section 4.3 that η is used
to weight the augmentation of the observed transition
statistics in the target environment (P (T)) with those
estimated from the counterfactually inferred trajec-
tories (P̂ (T)). In this figure we demonstrate CFPT
performance for policies learned in the simulated envi-
ronment with a proportion of diabetic patients being
0.8, transferring from a source environment where the
diabetic proportion is 0.1. The number of iterations
K of CF-PI is set to 50 and we demonstrate the ef-
fect of the policy regularization parameter λ and the
parameter η which is used to incorporate the inferred
empirical transition matrix P̂ (T) into the observed
target transition matrix P (T) for use in regularized
policy iteration (Algorithm 3 line 26).

Figure 7: Demonstration of parametric study used to
identify optimal settings of CFPT parame-
ters. Shown here, within a target environ-
ment with a diabetic proportion set to 0.8
with a source population diabetic propor-
tion set to 0.1, we see that the True RL
performance (solid lines) varies as λ and
η interact with a diminshed effect as λ in-
creases. CF-PE estimated reward (dotted
lines) asymptotically overestimates policy
performance as λ increases.

What we see in Figure 7 is that there is a balance
when selecting η and λ for CFPT policy learning. As
λ increases, meaning we are using less of the source
environment, no matter the choice of η, performance
more or less converges to the baseline non-transfer
setting within T. However when λ is smaller, meaning
we intend to use a larger proportion of the source
policy, we see that the choice of η can have a broad
effect. In the scenario demonstrated in Figure 7, we
see that the optimal setting comes when η = 0.7
and λ = 0.3 which are the values used for all CFPT
variants and ablations presented in Sec 5 when the
proportion of diabetic patients in T is 0.8.
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Table 2: Best performing hyperparameter settings for CFPT across each target environment T

Diabetic Proportion 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

w(T) 0.8 0.8 0.8 0.6 0.7 0.8 0.8 0.6 0.8 0.7 0.8
η 0.7 0.8 0.7 0.7 0.8 0.7 0.6 0.8 0.7 0.7 0.7
λ 0.9 0.9 0.3 0.1 0.3 0.6 0.3 0.1 0.3 0.4 0.9

Approach True RL Reward WIS Reward
Scratch −0.7398 ± 0.007 0.6388 ± 0.584
Pooled −0.4808 ± 0.012 0.9782 ± 0.004
Blind −0.3915 ± 0.013 0.5874 ± 0.113
RegPI −0.3366 ± 0.012 0.6266 ± 0.057

Red. CFPT −0.2116 ± 0.010 0.7689 ± 0.077
CFPT −0.1491 ± 0.011 0.7333 ± 0.004

Table 3: Numerical values corresponding the policy per-
formance results presented in Figure 4. The
observed behavior policy µ(T) receives an aver-
age reward of 0.1486± 0.018.

E.2.2. Counterfactual sampling with fully
observed state

Similar to the analysis presented in Section 6.3 and in
Figure 6, we investigate the change in the feature dis-
tributions in T when the simulated patient’s diabetic
status is known after sampling counterfactual trajec-
tories using the Gumbel-Max SCM, regularized by S.
The resulting comparison is shown in Figure 8.

Figure 8: Feature distributions with full observations
with the patient observations obtained in T

on the left and a resampling of the feature
distributions using counterfactuals drawn
from the regularized Gumbel-Max SCM on
the right.

E.2.3. Off-policy Evaluation of π(T)

The off-policy evaluation (OPE) of policies learned
from fixed data, without the ability to independently
test them is a challenging part of offline RL, and has
been understudied in partially observed settings (Ten-

nenholtz et al., 2020). Importance Sampling (IS) can
provide an estimate of policy performance with low
bias for OPE (Thomas, 2015), which is desirable in a
transfer setting. While we focus on true rewards as
our primary evaluation in this paper, we provide OPE
estimates in this section for completeness. For this, we
use weighted importance sampling (WIS) (Mahmood

et al., 2014) to evaluate our transfer policies due to
its interesting consistency properties. In Sec. E.3.3
we use an alternative, counterfacutally determined
OPE method, CF-PE (Oberst and Sontag, 2019), to
qualitatively evaluate the learned policies.

OPE estimates generally exhibit significant overcon-
fidence in expected rewards, as areas of high reward
are erroneously extrapolated over unseen regions of
the state space. We report the results of evaluat-
ing WIS for the learned policies π(T) in Table 3 for
the setting of T with a 0.8 proportion of diabetic pa-
tient trajectories. As expected, WIS overestimates
the true RL return in T, even with poor policies (i.e.
Scratch). However, we see some semblance of im-
provement with each component used to implement
our proposed CFPT approach. However, the general
unreliability of these OPE estimates make it difficult
to truly evaluate the benefits of transfer with coun-
terfactual regularization.

Fortunately, CF-PE allows for the comparison of indi-
vidual counterfactual trajectories influenced by CFPT
and other methods. This form of introspective evalua-
tion can help identify glaring safety issues for deploy-
ment of a trained policy in a new environment. As
seen in Sec. E.3.3, CFPT acts more conservatively and
closely approximates the observed behavior, leading
to more stable performance.
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Figure 9: Comparison of estimated reward in T between
CFPT and the baselines outlined in Sec. 5.
Results after WIS are plotted in red where the
true performance in T is plotted in blue. 95%
uncertainty intervals are found through 100
bootstrapped samples of the 5000 generated
trajectories under the learned target policy.

E.3. Qualitative Analysis of π(T)

Treatment Selection under CFPT: To better
compare policy evaluations between baselines, we per-
form an introspective analysis using CF-PE on both
a policy and trajectory level. First, we compare the
counterfactual outcomes between the naive baseline
policy without transfer (Scratch) against our full
CFPT trained policy, to identify how CFPT improves
policy learning within T (other comparisons between
CFPT and the baselines are in Section E.3.3). We first
compare the counterfactual outcomes as estimated
through CF-PE and then compare policy behavior un-
der counterfactual evaluation for an individual patient
drawn from T. In Section E.3.2 we present the aggre-
gate counterfactual outcomes as suggested by CF-PE
in comparison to what was observed. The primary dif-
ference in the evaluation between the Scratch policy
and that learned through CFPT is in the percentage
of patients CFPT does not discharge while Scratch
does. To further identify what separates these two
policies we select patients who die under the behav-
ior policy but are inferred to be discharged under
Scratch but kept in the hospital under CFPT. In
Figure 10, we observe that the non-transfer baseline
(Scratch) is far more aggressive in it’s treatment
decisions, leading to premature treatment cessation

as the patient’s condition deteriorates (visualized by
the blue counterfactual trajectories) immediately af-
ter they are indicated for discharge. In contrast, the
CFPT policy chooses a strategy that stably maintains
the patient condition, continuing all treatments until
the observation window terminates.

E.3.1. Sub-population Analysis of Evaluated
Policies

In Figure 11 we demonstrate the differences among
subpopulations when learning a policy with CFPT for
different target environments T (we choose to present
here the subpopulations from environments with a pro-
portion of diabetic (pDiab) patients being 0.3, 0.5 and
0.8). When pDiab = 0.5, the performance of CFPT
is only marginally better than the compared base-
lines. It’s evaluated policy performance with CF-PE is
also on par with the non-transfer baseline (Scratch)
which is also mirrored in the aggregate counterfactual
outcomes shown here as it is comparable to what has
been observed when evaluating the Scratch baseline
previously. The comparison between the two high-
est performing instances of CFPT (pDiab = 0.2 and
pDiab = 0.8) is an interesting cross-section view of
what happens when the target environment differs
from the source environment. Recall that the source
environment for all instances of transfer was set to
pDiab = 0.1. The population of this source environ-
ment is distributionally similar to T when pDiab=0.2.
Here, we see a significant increase in the number of
patients who are neither discharged or die in coun-
terfactual evaluation, in comparison to the other two
pDiab settings in Figure 11. This provides some fur-
ther evidence toward our conclusion that CFPT aids in
the development of more circumspect policies.

In Figure 12 we demonstrate the differences among
subpopulations when learning a policy with CFPT
having different settings of η (see Section E.2.1). With
a properly chosen η (here, 0.7), we see that the evalu-
ated outcomes of the policy increasingly push toward
discharge while less optimal policies (as evaluated)
appear to not have identified appropriate treatment
strategies to move a majority of the observed patient
trajectories toward discharge. This is most appar-
ent when considering the non-diabetic patients, those
who are in the minority within the target environment.
This divergence in performance between subpopula-
tions speaks to the importance of properly tuning the
CFPT procedure.
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Figure 10: Qualitative comparison between CFPT and the Scratch baseline. We compare an individual
patient’s counterfactual trajectories using these policies. Dark lines are the observed vital
measurements and actions over time while the lighter blue traces correspond to counterfactual
observations and actions. Green, red and black markers denote discharge, death and no change
respectively. CFPT provides more stable treatment selection in comparison with the non-transfer
baseline. Additional samples in Appendix E.3.3

.

Figure 11: Aggregated counterfactual outcomes by subpopulation for different target environments T.

Figure 12: Aggregated counterfactual outcomes by subpopulation for different settings of η within CFPT.
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Figure 13 presents an analysis between subpopula-
tions for the non-transfer baseline (Scratch) and our
proposed CFPT approach. Here we’re looking at out-
comes as inferred by counterfactual policy evaluation
for the policies learned for each approach. As was
discussed in Section 6, the policies learned via CFPT
are slightly more conservative for the rarely observed
non-diabetic population of the target environment.
The suggested treatments and the inferred outcomes
are far more measured in aggregate when using CFPT
than is manifest from the non-transfer baseline.

Figure 13: Aggregated counterfactual outcomes by
subpopulation following the non-transfer
baseline policy vs CFPT. These values are
normalized by the number of patients be-
longing to each subpopulation (diabetic vs.
non-diabetic) respectively. CFPT in aggre-
gate is more conservative for the diabetic
(rare class in source) in CF-PE evaluation.

E.3.2. Counterfactual policy evaluation:
full comparison

In Figure 14 we present a full comparison between the
counterfactual policy evaluation results, segmented
by outcome, for each baseline and version of our pro-
posed CFPT approach for off-policy transfer learning
with limited data in the target environment. The
counterfactual outcome demonstrates the unreliability
of a blind transfer policy. Benefits of each parts of
our regularization do shift the confidence in our policy
toward discharge.

E.3.3. Introspective Analyses of Learned
Policies

In this section we include additional introspective
trajectory comparisons between the the non-transfer
baseline (Scratch) and our proposed transfer pro-
cedure (CFPT). The simulated patients extracted
for this comparison are those that were observed to
die where the Scratch baseline is evaluated to have
treated these patients sufficiently to be discharged
while CFPT is more circumspect, being evaluated to
have sustained the patient’s life yet not able to move
them to be discharged. These examples confirm the
insight reported in the main text of the paper, that
the policy learned through CFPT more closely approx-
imates the observed behavior policy in a stable fashion
while also seeing slight deviations that appear to con-
tribute to keeping the patient’s vitals within a healthy
range. In comparison, the non-transfer baseline pol-
icy proposes far more aggressive treatments that, in
off-policy evaluation, appear to be effective yes the
patient’s vitals rapidly fall out of a normal or healthy
range as soon as all treatments are stopped.

To augment the presentation provided in Figure 10
we include four additional trajectory introspection
figures. The first of which belongs to a non-diabetic
patient (Figure 15 recall, this is type of patient is found
in lower proportion within the target environment)
while the other three are diabetic patients (Figures 16-
18).
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Figure 14: Comparison of all baselines in their aggregate population statistics in counterfactual evaluation of
the policies learned in the target environment pDiab=0.8

Figure 15: Introspective analysis of counterfactually sampled trajectories following the non-transfer baseline
policy evaluation (left) compared with the evaluation of the proposed CFPT policy (right). This
simulated patient is non-diabetic.
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Figure 16: Introspective analysis of counterfactually sampled trajectories following the non-transfer baseline
policy evaluation (left) compared with the evaluation of the proposed CFPT policy (right). This
simulated patient is diabetic.

Figure 17: Introspective analysis of counterfactually sampled trajectories following the non-transfer baseline
policy evaluation (left) compared with the evaluation of the proposed CFPT policy (right). This
simulated patient is diabetic.
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Figure 18: Introspective analysis of counterfactually sampled trajectories following the non-transfer baseline
policy evaluation (left) compared with the evaluation of the proposed CFPT policy (right). This
simulated patient is diabetic.
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