Counterfactually Guided Policy Transfer in Clinical Settings
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Motivation

Domain shift between training and
deployment clinical environments
significantly limits the ability to transfer

trained treatment models. These challenges -
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Off-policy Transfer as
Counterfactual Inference

Following Buesing, et al' and we assume observation-treatment interactions
can be modeled by a POMDP structured as a Structural Causal Model

The edges of this graphical model captures relevant causal dependencies
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Gumbel-Max SCM

Oberst and Sontag? introduced the Gumbel-Max SCM, which ensures that
counterfactual queries preserve observed outcomes when sampling from
discrete, categorical distributions (embedding the Gumbel-Max Trick3).

All nodes in a Gumbel-Max SCM are modeled with the following functional
form:

X; :=argmax logp(X; =j|PA;)+ g,
J
given independent Gumbel variables g {gl, g, ... ,gk}.
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Counterfactually Guided Policy Transfer
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To enable the transfer of trained treatment policies in offline settings (where we only
have access to a collection of observed trajectories 7), we model the common
generative process using a causal mechanism to guide policy development in the
target environment. This builds on two phases of regularization:

1. Leverage structural similarities to facilitate the use of P(5) as an informative
prior to improve counterfactual transition estimation in T

2. Constraining 7" to remain close to 7% in order to avoid unsafe behaviors in
regions of poor data support in T

Counterfactual Regularization

To improve the counterfactual sampling of the observed transition statistics P we use

the more accurate P'®) as an informative prior when establishing posterior estimates of
the exogenous variables U defining the causal mechanisms, used to infer the Gumbel
parameters. That is we use:

p(g™) = p(g®r®)

when estimating the posterior over these Gumbels:
p(gM 7™, Py o p(r " |g™)p(g™)
= p(7"|gM)p(g® |P®))

We use a mixture parameterization of this posterior, conditioned on observation k" in T

p(gi”, .. gPK) =wPpgt™, ... 9P log PP, k)
—I—w(s)p(g?), .., log P K

Regularized Policy Iteration

To avoid dangerous overconfidence in regions of low data-support in T we regularize
(D through minimizing the KL-divergence between a proposed policy v (derived from
the policy improvement step of Policy Iteration) and the learned optimal w3
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Simulated Clinical Validation of CFPT

We demonstrate the benefits of the two-phase regularization of CFPT through a
simulated clinical task of treating septic patients with the following features:

- Heart Rate - Systolic Blood Pressure - Percent 0>

- Glucose - Diabetic Status (Unobserved)
We consider the task of transferring treatment policies from a data-rich environment
where diabetic patients are in the minoirty (20%) to a data-scarce environment where
the proportion of diabetic patients has shifted, and may be in the majority.

CFPT is Robust Under Domain Shift

We compare CFPT to a set of standard transfer baselines and ablations across a set of
target environments by varying proportions of diabetic patients
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CFPT Improvement Across Levels of Data-Scarcity
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We test the extent of the benefits of 2]
transfer via CFPT when the amount of
data in the target environment increases.
CFPT, by virtue of the regularization
procedures maintains improvement over
standard transfer baselines.
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CFPT Develops Stable Treatment Policies
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