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Building from [2], Wilson and Hu, et. al 

[3] introduced Deep Kernel Learning

(DKL), an innovative hybrid GP and DNN 
architecture that leverages the rich 
features of a DNN to flexibly construct a 
GP kernel function.
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Objective:

Utilize DKL to construct a kernel covariance function from 

the output capsule feature representations to provide:

1) Robustness to Adversarial Examples

2) Detection of Adversarial Examples

3) End-to-end training of CapsNet with marginal likelihood

MNIST SVHN CIFAR10

White Box Black Box White Box Black Box White Box Black Box

CapsNet (L2) 0.8616 0.8344 0.8907 0.8813 0.8073 0.7992

KCN (L2) 0.9072 0.9160 0.9266 0.9229 0.8915 0.9350

KCN (Entropy) 0.7806 0.7134 0.7935 0.8132 0.7062 0.7843

KCN-GP (Entropy) 0.8860 0.8631 0.5688 0.6758 0.7580 0.6844

CIFAR10

Reconstruction Network

Visualizing Learned Capsules

Capsule Networks [1], replace scalar

neurons in DNNs with vector capsules,

which encode spatial relationships

between the learned features. CapsNets

have shown promise in simple image

classification.

CapsNet

Frosst, et. al [4] demonstrated that a

reconstruction network, originally used

to regularize the CapsNet, can detect

corrupted inputs by measuring the

distance between the input image and

reconstruction of the output capsule.

Bradshaw, et. al [5] showed that these

hybrid DKL architectures can provide a

means to detect Adversarial Examples

and improve robustness through the

entropy of the Multivariate Normal

Distribution constructed by the GP.

When comparing the KCN with the CapsNet and an ablated KCN that forgoes

the reconstruction network (KCN-GP), it is clear that the KCN is more robust to
Adversarial Examples (left column) and provides the most effective 
mechanism to detect when inputs are corrupted [right column; KCN (L2)]. Solid

and dashed lines represent white and black box attacks, respectively.

Adversarial Example Detection Results (AUC)

Capsules display “attention”

behavior and key in on certain

invariant properties such as

“stroke” or “curvature” for

MNIST, while focusing on color

and gradients for SVHN and

CIFAR10.

• Robust architectures should have the capability

to identify when observations have been

corrupted

• Reconstruction error provides a signal that

features are unreliable for classification and

possibly corrupt

• Entropy of the posterior distribution derived from

the learned GP can also signal uncertainty in

classification decision
Full Output Capsule 

Feature

1st Output Capsule

Feature

3rd Output Capsule

Feature

𝒉𝟏
(𝟏)

𝒉𝟏
(𝟐)

𝒉𝟏
(𝟑)

𝒉𝑨
(𝟏)

𝒉𝑩
(𝟐)

𝒉𝑸
(𝟑)

MNIST

Hybrid GP-DNN

R
edraw

n from
 [5]

R
edraw

n from
 [4]




