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Abstract

An intriguing application of transfer learning arises among
tasks with similar, but not identical, dynamics. Hidden Pa-
rameter Markov Decision Processes (HiP-MDP) embed these
tasks into a low-dimensional space; given the embedding pa-
rameters one can identify the MDP for a particular task. How-
ever, the original formulation of HiP-MDP had a critical flaw:
the embedding uncertainty was modelled independently of
the agent’s state uncertainty, requiring an unnatural training
procedure in which all tasks visited every part of the state
space. In this work, we apply a Gaussian Process latent vari-
able model to jointly model the dynamics and the embedding,
leading to both a more elegant formulation and one that al-
lows for better uncertainty quantification and thus more ro-
bust transfer. We demonstrate an initial promising result that
our correction behaves as expected and illustrate it’s use on
three domains: acrobot, as well as HIV and a diabetes simu-
lators.

Introduction
In a multitude of decision and control problems, there are
instances where subtle variations in the underlying physi-
cal system can introduce a broad range of dynamics. These
variations in unobserved and observed representations of the
system can contribute to inefficiencies or, in some dramatic
cases, failure in an agent’s ability to learn an optimal con-
trol policy. This is particularly true when the agent is trained
from data that does not account for unexpected variations.

With the growing availability of data sets generated by
similar, but not identical, processes (e.g. healthcare, sens-
ing networks, robotics) there is a compelling need to de-
velop learning frameworks that include and account for sys-
tem variations in an efficient and robust manner. In order to
develop optimal treatment or control policies, it is undesir-
able and ineffectual to start afresh each time a new instance
is encountered. Ideally, an agent tasked with developing an
optimal control policy would be able to leverage the similar-
ities across separate, but related, instances. This paradigm of
learning introduces an intriguing use case for transfer learn-
ing.

The Hidden Parameter Markov Decision Process (HiP-
MDP) (Doshi-Velez and Konidaris 2013) was introduced as a
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formalization of these domains with two primary features.
First, that a bounded number of latent parameters, w, for
a single task instance can fully specify the system dynam-
ics, θ, if learned. That is, the dynamics dictating a system’s
transition between states can be expressed as T (s′|s, a, θb)
for instance b. Second, that the system dynamics will not
change during a task and an agent would be capable of de-
termining when a change occurs. The HiP-MDP was shown
to be able to rapidly identify the dynamics of a new task in-
stance and flexibly adapt to the variations present therein.
However, the original HiP-MDP formulation had a criti-
cal flaw: the embedding uncertainty of the latent parame-
ter space was modelled independently from the agent’s state
uncertainty. This created an inefficient training procedure,
requiring the agent to canvas the state space before identi-
fying the variations present in the dynamics of the current
instance.

We present an update to the original HiP-MDP that al-
lows for more efficient training by embedding the latent
parametrization in the observed data via a Gaussian Pro-
cess latent variable model (GPLVM). This approach creates
a unified Gaussian Process GP) model for both inferring the
transition dynamics within a task instance but also in the
transfer between task instances (Cao et al. 2010). Steps are
taken to avoid negative transfer by selecting the most rep-
resentative examples of the prior instances with regards to
the latent parameter setting. This change in the model al-
lows for better uncertainty quantification and thus more ro-
bust and direct transfer. We ground our approach with recent
advances in the use of GP to approximate dynamical systems
and in transfer learning. We then formalize the adjustments
to the HiP-MDP framework and present the performance of
the adjusted HiP-MDP on developing control policies for the
acrobot domain, as well as HIV and Diabetes simulators.

Related Work
Inference with GP GP have increasingly been used to
facilitate methods of Reinforcement Learning (RL) (Ras-
mussen and Kuss 2003),(Rasmussen and Williams 2006). Recent
advances in modeling dynamical systems with GP have led
to more efficient and robust formulations (Deisenroth and
Rasmussen 2015),(Deisenroth and Rasmussen 2011), most par-
ticularly in the approximation and simulation of dynam-
ical systems. The HiP-MDP approximates the underlying



dynamical system of the task through the training of a
Gaussian Process dynamical model (Deisenroth and Mohamed
2012),(Wang, Fleet, and Hertzmann 2005) where only a small
portion of the true system dynamics may be observed as is
common in partially observable Markov Decision Processes
(POMDP) (Kaelbling, Littman, and Cassandra 1998). In order
to facilitate the transfer between task instances we embed
a latent, low-dimensional parametrization to the states. By
virtue of the GP (Lawrence 2004),(Urtasun and Darrell 2007),
this latent embedding allows the HiP-MDP to infer across
similar task instances and provide a better prediction of the
currently observed system.

GP in Transfer Learning The use of GP to facilitate
the transfer of previously learned information to new in-
stances of the same or a similar task has a rich his-
tory (Bonilla, Chai, and Williams 2008)(Kaelbling, Littman, and
Cassandra 1998),(Rasmussen and Kuss 2003). More recently,
there have been advances in organizing how the GP is used
to transfer, being constrained to only select previous task in-
stances where positive transfer occurs (Cao et al. 2010),(Leen,
Peltonen, and Kaski 2011). This adaptive approach to transfer
learning helps to avoid previous instances that would oth-
erwise negatively affect effective learning in the current in-
stance. By selecting the most relevant instances of a current
task for transfer, learning in the current instance becomes
more efficient.

RL in healthcare The use of RL (and machine learning,
in general) for the development of optimal control policies
and decision making strategies in healthcare (Shortreed et
al. 2011) is gaining significant momentum as methodologies
have begun to adequately account for uncertainty and varia-
tions in the problem space. There have been notable efforts
made in the administration of anesthesia (Moore et al. 2014),
in personalizing cancer (Tenenbaum et al. ) and HIV ther-
apies (Ernst et al. 2006) and in understanding the causality
of macro events in diabetes managment (Merck and Klein-
berg 2015). Also, recent progress has been made to formal-
ize routines to accommodate multiple sources of uncertainty
in batch RL methods to better evaluate the effectiveness
of treatments across subpopulations of patients (Marivate et
al. 2014). We similarly attempt to address and identify the
variations across subpopulations as well as the uncertainty
present in the development treatment policies. We instead,
attempt to account for these variations while developing ef-
fective treatment policies in an approximate online fashion.

A HiP-MDP with Joint Uncertainty
The HiP-MDP is described by a tuple:
{S,A,Θ, T,R, γ, PΘ}, where S and A are the sets of
states s and actions a, and R(s, a) is the reward function
mapping the utility of taking action a from state s. The
transition dynamics T (s′|s, a, θb) for each task instance
b depends on the value of the hidden parameters θb ∈ Θ.
Where the set of all possible parameters θb is denoted by
with Θ and where PΘ is the prior over these parameters.
And finally, γ ∈ (0, 1] is the factor by whichR is discounted

to express how influential immediate rewards are when
learning a control policy. Thereby, the HiP-MDP describes
a class of tasks; where particular instances of that class
are obtained by independently sampling a parameter vector
θb ∈ Θ at the initiation of a new task instance b. We
assume that θb is invariant over the duration of the instance,
signaling distinct learning frontiers between instances when
a newly drawn θb′ accompanies observed additions to S and
A.

The HiP-MDP presented in (Doshi-Velez and Konidaris
2013) provided a transition model of the form:

(s′d − sd) ∼
K∑
k

zkadwkbfkad(s) + ε

ε ∼ N (0, σ2
nad)

which sought to learn weights wkb based on the kth la-
tent factor corresponding to task instance b, filter parameters
zkad ∈ {0, 1} denoting whether the kth latent parameter
is relevant in predicting dimension d when taking action a
as well as task specific basis functions fkad drawn from a
GP. While this formulation is expressive, it presents a prob-
lematic flaw when trained. Due to the independence of the
weights wkb from the basis functions fkad, training the HiP-
MDP requires canvassing the state space S in order to in-
fer the filter parameters zkad and learn the instance specific
weights wkb for each latent parameter.

We bypass this flaw by applying a GPLVM (Lawrence
2004) to jointly represent the dynamics and the latent weights
wb corresponding to a specific task instance b. This leads to
providing as input to the GP, with hyperparameters ψ, the
augmented state s̃ =: [sᵀ, a, wb]

ᵀ. The approximated tran-
sition model then takes the form of:

s′d ∼ fd(s̃) + ε

fd ∼ GP (ψ)

wb ∼ N (µb,Σb)

ε ∼ N (0, σbd)

This approach enables the HiP-MDP to flexibly infer the dy-
namics of a new instance by virtue of the statistical similar-
ities found in the learned covariance function between ob-
served states of the new instance and those from prior in-
stances. Another feature of formulating the HiP-MDP after
this fashion is that we are able to leverage the marginal log
likelihood of the GP to optimize the weight distribution and
thereby quantify the uncertainty (Candela 2004),(Candela et al.
2003) of the latent embedding of wb for θb. These two fea-
tures of reformulating the HiP-MDP as a GPLVM allows for
more robust and efficient transfer.

Inference
Parameter Learning and Updates We deploy the HiP-
MDP when the agent is provided a large amount of batch ob-
servational data from several task instances and tasked with
quickly performing well on new instances. With this obser-
vational data the GP transition functions fd are learned and
the individual weighting distributions for wb are optimized.



However, the training of the fd requires computing inverses
of matrices of size N =

∑
b nb where nb is the number of

data points collected from instance b. To streamline the ap-
proximation of T we choose a set of support points s∗ from
Sb that sparsely approximate the full GP. Optimization pro-
cedures exist to select these points accurately (Snelson and
Ghahramani 2005), (Rasmussen and Williams 2006) we however
heuristically select these points to minimize the maximum
reconstruction error within each batch.

Control Policy A control policy is learned for each task
instance b following the procedure outlined in (Deisenroth and
Rasmussen 2011) where a set of tuples (s, a, s′, r) are ob-
served and the policy is periodically updated (as is the latent
embedding wb) in an online fashion, leveraging the approxi-
mate dynamics of T via the f∗d to create a synthetic batch of
data from the current instance. This generated batch of data
from b is then used to improve the current policy via fitted-Q
iteration (Ernst, Geurts, and Wehenkel 2005). Multiple episodes
are run from each instance b to optimize the policy for com-
pleting the task under the hidden parameter setting θb. After
doing so, the hyperparameters of the GP defining the fd are
updated before learning for another randomly manifest task
instance.

Figure 1: Toy Problem: (a) Schematic outlining the domain,
(b) learned policy for “red” parametrization, (c) learned pol-
icy for “blue” parametrization, (d) uncertainty measure for
input point according to separate latent classes.

Demonstration We demonstrate a toy example (see Fig-
ure 1) of a domain where an agent is able to learn sep-
arate policies according to a hidden latent parameter. In-
stances inhabiting a “blue” latent parametrization can only

pass through to the goal region over the blue boundary while
those with a “red” parametrization can only cross the red
boundary. After a few training instances, the HiP-MDP is
able to separate the two latent classes and develops indi-
vidualized policies for each. We place an unclassified sur-
vey point in the top left quadrant, with a proposed action
to move to the right, to gather information about the policy
uncertainty given the two latent classes.

Future Experiments and Model Adjustments
Experiments using the HiP-MDP formulation
We highlight here the separate domains on which we will
apply the adjusted HiP-MDP framework and procedure pre-
sented above. In all domains, we summarize the entire sys-
tem with the tuple: {S,A,Θ, T,R, γ, PΘ} and apply fiited-
Q iterations (Ernst, Geurts, and Wehenkel 2005) on synthesized
batch data derived from limited observations of the true dy-
namical system.

Baselines We aim to benchmark the HiP-MDP framework
in the HIV, Diabetes and Acrobot domains by observing
how an agent would perform without transferring informa-
tion from prior patients to aid in the efficient development
of the treatment policy for a current patient. We do this by
representing two ends of the precision medicine spectrum;
a “one-size-fits-all” approach that learns a single treatment
policy for all patients by using all previous patient data to-
gether and a “personally tailored” treatment plan where a
single patient’s data is all that is used to train the policy. We
represent these baselines in environments where a model is
present (with the simulators) or absent (utilizing the GP ap-
proximation).

Figure 2: Desired baseline relationship between “one-
size-fits-all” policy and HiP-MDP learned policy, copied
from (Doshi-Velez and Konidaris 2013)

HIV Ernst, et.al. (Ernst et al. 2006) leverage the mathemat-
ical representation of how a patient responds to HIV treat-



ments (Adams et al. 2004) in developing an RL approach to
find effective treatment policies using fitted-Q iteration. The
learned treatment policies cycle on and off two different
types of anti-retroviral medication in a sequence that maxi-
mizes long-term health.

Figure 3: Example of gains made in the HIV domain in
the fitted-Q optimized treatment policy over naive treatment
baselines and randomized policy.

Diabetes Merck and Kleinberg (Merck and Kleinberg 2015)
developed a model within which they could infer how a pa-
tient with type I diabetes responds to different environmental
stimuli alongside the intrinsic glucose-insulin process. This
model was developed to study causality in diabetes man-
agement while we adopt it to train an agent to effectively
balance glucose and insulin levels over the course of a few
hours. We assume that the patient heeds the direction an
agent gives. The agent has the ability to suggest glucose in-
take or insulin injections as it determines to be appropriate.

Acrobot The acrobot, introduced in (Sutton and Barto 1998),
features a double-pendulum. The agent can apply a positive,
negative, or neutral torque to the hinge joint between the two
legs of the pendulum. The goal is to apply a combination of
torques in succession so as to swing the foot of the pendulum
above a specified height above the hinge at the top of the
pendulum.

Making the HiP-MDP more efficient and robust
There has been significant progress toward formalizing a
more robust HiP-MDP by jointly modeling the state and
latent embedding uncertainties. However, we have encoun-
tered significant computational and run-time difficulties
when accounting for the full-data GP. We have begun in-
vestigating two approaches to bypass this bottleneck when
developing a policy for a current task instance, based on pre-
vious data.

θ1

θ2

Goal: Raise tip above line

Torque
applied

here

tip

Figure 4: Schematic of Acrobot Domain, pulled from (Sut-
ton and Barto 1998).

Using Bayesian Neural Networks for the Latent Variable
Model In the near future we will be utilizing multiple ap-
proaches to make the HiP-MDP more efficient, most partic-
ularly in the transfer between prior task instances, and be
enabled to fully quantify the uncertainty in the transfer be-
tween task instances. The computational load to train and
infer from the GPLVM severely limits the amount of data
one can use from prior task instances when training the cur-
rent instance. This causes an incomplete transfer between
instances and impacts the robustness of the HiP-MDP. To
account for this and to more efficiently provide updates to
the learned policy we aim to transition away from a GP-
based approximation of the dynamics and adopt Bayesian
Neural Networks. This added efficiency will allow us to
perform more detailed testing within the domains presented
here and to more accurately estimate the uncertainty in the
latent weight distributions.

Adaptive Transfer Learning We also aim to introduce
a non-parametric approach to selecting which of the pre-
vious instances to select as a representative set to use for
transferring to the current instance. Currently we are using
a hard-coded heuristic to accomplish this task by measur-
ing the similarity between the latent representations (w) of
each instance and choosing the closest few for transfer. We
hope to train a separate “scheduler” that can identify features
between task instances and can thus choose which previous
examples are most relevant for our current example. This ap-
proach will rely heavily on the work done in (Cao et al. 2010)
and (Leen, Peltonen, and Kaski 2011).
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