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We can demonstrate the contributions of this shift in the modeling by visualizing the BNN 
approximation’s robustness as well as it’s scalability in comparison with a GP-based model 

Robust to unobserved 
instances of the task

Scalable to large state 
domains at higher data rates

HiP-MDP with Joint Uncertainty
We augment the form the original HiP-MDP, improving the robustness and 
efficiency of the approximation of                     by: 
  

• Embedding the latent representation      of the dynamics      with the input 

• Replacing the Gaussian Process basis functions with a BNN 

• Jointly representing the full state and latent representation uncertainty via the BNN
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Subtle differences in the underlying dynamics of similar, 
but not identical, processes provide an intriguing 
application of transfer learning.

By exploiting statistical similarities in the distributions 
of latent processes, one can approximate a transition 
model                      given previous observations

Doshi-Velez and Konidaris1 introduced the HiP-MDP to address 
the transfer between closely related tasks. While expressive, the 
model is neither scalable nor efficient.
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The structure of the BNN allows for iterative and independent updates of 
both the network parameters as well as the latent weights       following the 
procedure introduced by Deisenroth and Rasmussen2.  

The control policy is trained via a Double Deep Q Network3 using 
prioritized experience replay4.
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We demonstrate the capability of the updated HiP-
MDP with a simple toy domain. Here an agent is 
assigned a hidden latent class that determines how 
it can transition into a goal region.  

Our updated model is able to flexibly learn 
separate policies for the different latent classes. The 
model is also able to infer transition uncertainty 
under separate latent class assumptions. 

The performance of the HiP-MDP on this toy 
problem is encouraging for eventual application to 
more complex and critical domains.

Toy problem HIV Treatment Simulator
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