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Motivation

Subtle differences in the underlying dynamics of similar,
but not identical, processes provide an intriguing

application of transfer learning. model T (s'| s,a,0)

By exploiting statistical similarities in the distributions
of latent processes, one can approximate a transition

Hidden Parameter Markov
Decision Processes (HiP-MDP)

Doshi-Velez and Konidaris' introduced the HiP-MDP to address
the transfer between closely related tasks. While expressive, the

given previous observations model is neither scalable nor efficient.
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HiP-MDP with Joint Uncertainty

We augment the form the original HiP-MDP, improving the robustness and
efficiency of the approximation of T' (s'| s, a, ) by:

ynamics @}, with the input

¢ Embedding the latent representation Wy, of the d
® Replacing the Gaussian Process basis functions with a BNN

® Jointly representing the full state and latent representation uncertainty via the BNN

Parameter Learning
and Agent Training

The structure of the BNN allows for iterative and independent updates of
both the network parameters as well as the latent weights Wp following the
procedure introduced by Deisenroth and Rasmussen?.

The control policy is trained via a Double Deep Q Network® using
prioritized experience replay*.

Q(DoubleQ) = Rii1+7 Q@ (St—|—17 arg mC?XQ (St—l—h a, (I)t) ) (I)t_)
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We can demonstrate the contributions of this shift in the modeling by visualizing the BNN
approximation’s robustness as well as it’s scalability in comparison with a GP-based model
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Robust to unobserved
instances of the task
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Scalable to large state
domains at higher data rates
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Demonstration
We demonstrate the capability of the updated HiP-
MDP with a simple toy domain. Here an agent is 1
assigned a hidden latent class that determines how Region T ¢
it can transition into a goal region. -
Our updated model is able to flexibly learn L e ongin — T

separate policies for the different latent classes. The
model is also able to infer transition uncertainty
under separate latent class assumptions.
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The performance of the HiP-MDP on this toy
problem is encouraging for eventual application to
more complex and critical domains.
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