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Abstract

Reinforcement Learning (RL) has re-
cently been applied to sequential estima-
tion and prediction problems identifying
and developing hypothetical treatment
strategies for septic patients, with a par-
ticular focus on offline learning with ob-
servational data. In practice, successful
RL relies on informative latent states de-
rived from sequential observations to de-
velop optimal treatment strategies. To
date, how best to construct such states
in a healthcare setting is an open ques-
tion. In this paper, we perform an empir-
ical study of several information encod-
ing architectures using data from septic
patients in the MIMIC-III dataset to
form representations of a patient state.
We evaluate the impact of representation
dimension, correlations with established
acuity scores, and the treatment policies
derived from them. We find that sequen-
tially formed state representations facil-
itate effective policy learning in batch
settings, validating a more thoughtful
approach to representation learning that
remains faithful to the sequential and
partial nature of healthcare data.

Keywords: representation learning, re-
inforcement learning, partial observabil-
ity, sequential autoencoding

1. Introduction

Figure 1: The first and final observations of sep-
tic patients in MIMIC-III, colored by SOFA score,
visualized via Principal Component Analysis. Blue
lines connect observations of patients who recovered,
while red lines signify those that did not. Notably,
these raw observations of severe health are not directly
separable.

Many problems in healthcare are a form of
sequential decision making, e.g., clinical staff
making decisions about the best “next step”
in care (Ghassemi et al., 2019). Solving these
problems is similar to finding an optimal deci-
sion making policy, requiring estimation and
optimization of the cumulative effects of deci-
sions over time (Sox et al., 2007). Recently, re-
inforcement learning (RL) has been proposed
as a promising approach for finding an optimal
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policy for such processes from data (Gottes-
man et al., 2019). However, the development
of a successful policy rests on the ability to
derive informative states from observations.
In healthcare these observations are noisy, ir-
regular, and may not convey the entirety of a
patient’s condition (Obermeyer and Emanuel,
2016). While there are many proposed state
construction approaches to handle these chal-
lenges (Li et al., 2019; Chang et al., 2019;
Peng et al., 2018; Prasad et al., 2017; Raghu
et al., 2017a,b), few consider the sequential
nature of observations, choosing instead to
isolate the features from a single time step to
construct the state.

Critical care is one specific setting where se-
quential data is crucial for predictive mod-
elling. Raw physiological observations may
not be clearly separable with respect to
patient acuity or outcome, complicating
downstream prediction and treatment mod-
els (Ibrahim et al., 2020) (see Figure 1).
Complex model architectures have shown im-
proved performance on such tasks, due in part
to their improved ability to generate high-
quality representations (Choi et al., 2016; Sa-
dati et al., 2018; Weng and Szolovits, 2019).
Yet within healthcare, the design and learning
of patient representations for RL is an open
problem (Yu et al., 2019).

In this work, we provide a controlled investiga-
tion of sequentially encoded state representa-
tions for use within RL applied to healthcare.
We focus on the problem of treating septic
patients (Liu et al., 2020), using a patient
cohort defined by Komorowski et al. (2018)
from the MIMIC-III dataset (Johnson et al.,
2017). We compare seven encoding architec-
tures, and evaluate representations learned
from sequential patient observations through
three experiments.

First, we examine the effect of representa-
tion dimension when training models to pre-

dict subsequent physiological observations
(SO) through autoencoding (Baldi, 2012)
prior physiological observations. We posi-
tion this as an auxiliary task to the develop-
ment of a treatment policy (Jaderberg et al.,
2017).

Second, we investigate the impact of including
contextual information as well as regulariza-
tion when training these models. Context is
added by augmenting the physiological obser-
vations with 5 demographic features. When
regularizing model training, the learned rep-
resentations are regularized to correlate with
three clinical patient acuity scores – OASIS
(Jones et al., 2009), SAPS II (Le Gall et al.,
1993a) and SOFA (Johnson et al., 2013). We
then qualitatively evaluate representations to
determine their correlation with these scores,
and embed them into a lower dimensional vi-
sualization to demonstrate their separability
in contrast to the raw data.

Finally, we learn treatment policies from the
encoded patient state representations using
a state of the art off-policy RL algorithm,
the discretized form of Batch Constrained
Q-learning (dBCQ) (Fujimoto et al., 2019a).
Policies are evaluated using weighted impor-
tance sampling (Mahmood et al., 2014).

To our knowledge, we present the first rigorous
empirical evaluation of learned patient state
representations that facilitate policy learning.
A summary of our contributions are:

• We show that, keeping all other hyperpa-
rameters constant, increasing the latent di-
mensionality could reduce prediction accu-
racy, indicating that high capacity repre-
sentations are not always most informative.

• We find that including demographic con-
text when learning the state representation
generally improves the performance of pre-
dicting SO.
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• We demonstrate that sequentially formed
state representations can facilitate effective
policy learning in batch settings. In partic-
ular, we find that representations learned
through the recent Neural CDE (Kidger
et al., 2020) facilitate an especially effective
policy.

2. Background and related
work

State representation learning has a long his-
tory within RL as a primary means of mak-
ing complex control tasks computationally
tractable (Sutton et al., 1999). Recent re-
search has also separated feature extraction
from policy learning (Raffin et al., 2019),
where the goal is to isolate relevant features
of the recorded observations in the represen-
tation, and provide more salient information
to the policy learning algorithm.

Problems modeled as POMDPs often require
a state representation to be specified, typ-
ically deriving from prior observations and
actions (Kaelbling et al., 1998). Past work
in state construction has ranged from con-
catenation of a finite number of consecutive
observations (Mnih et al., 2013) to using
the final layer of a recurrent neural network
(RNN) to collectively embed a sequence of
inputs (Hausknecht and Stone, 2015).

Most prior work in the context of RL and
healthcare has constructed states from un-
processed observations, framing the problem
as a fully observable MDP 1. This approach
naively abstracts the true nature of the data
generating process which is inherently par-
tially observable. Missingness as well as an
incomplete understanding of biological and
physiological processes contribute to the par-
tial nature of healthcare observations. There

1. For reference, Table 4 summarizes these ap-
proaches, found in Appendix C

is a growing set of RL literature in this applied
space that accounts for partial observability
explicitly. The literature specific to sepsis
treatment (Tsoukalas et al., 2015; Li et al.,
2018; Peng et al., 2018; Li et al., 2019; Lu
et al., 2020) often learns state representations
by utilizing recurrent methods, encoding se-
quentially observed features of the patient’s
condition into a hidden state.

To date, none of these works provide any
analysis or justification of specific state rep-
resentation choices. In this paper we address
this empirical gap by rigorously evaluating
multiple recurrent state representation learn-
ing approaches for use in healthcare. With
this study we hope to provide a foundation
for further research into representation learn-
ing for sequential decision problems within
healthcare.

3. Data

We consider the treatment of septic patients
using data from the Medical Information Mart
for Intensive Care (MIMIC-III) dataset (v1.4)
Johnson et al. (2016). We follow Komorowski
et al. (2018) to extract and preprocess2 rele-
vant vital and lab measurements to build a
cohort of 19,418 patients among which there
is an observed mortality rate just above 9%
(determined by death within 48h of the final
observation).

To evaluate the formation of sequential repre-
sentations of a patient’s condition, we focus on
patient vital signs and lab measurements that
change over time, whether in response to se-
lected treatments or as a consequence of their
acute condition. This creates a dataset of 33
features O with a discrete categorical action
space with 25 possible choices of combination
between fluid and vasopressor amounts. We

2. Code available at https://github.com/
matthieukomorowski/AI_Clinician
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also experiment with including 5 additional
demographic features D.

We include a list of features in Table 2 with
additional details included in Section A of the
Appendix.

4. Methods

In this section, we provide a general overview
of state representation learning via autoen-
coding architectures. We focus on the context
of our first experimental analysis, where repre-
sentations are used to predict the subsequent
observation (SO).

4.1. General overview

With a batch of observed patient trajectories—
comprised of transitions between subsequent
observations Ot and Ot+1 following treatment
action At—we seek to learn an encoding func-
tion ψ : Ht,t−1 → Ŝt as well as a decoding
prediction function φ : Ŝt ×At → Ôt+1. Here
the history Ht,t−1 contains all observations
O0:t and actions A0:t−1 preceding the target
observation Ot+1. Together, the encoding and
decoding functions form a prediction Ôt+1 us-
ing the learned state representation Ŝt. That
is, Ôt+1 = φ (ψ (Ht,t−1) , At) = φ(Ŝt, At). To fa-
cilitate sequentially stable predictions for the
state representation Ŝt we choose encoding
functions ψ with a recurrent structure. Thus,
Ŝt implicitly embeds the historyHt,t−1, which
has been shown to improve sepsis treatment
policies (Li et al., 2019).

We jointly train the encoding function ψ
and decoding function φ via a loss function
L(Ot+1, Ôt+1), which in general computes the
mean squared error between the predicted and
true SO, as specified by the particular encod-
ing approach.

4.2. Information encoding
models

We target six recurrent modeling approaches,
largely motivated by their development to
learn dynamics models:

• Basic RNN Autoencoder (RNN) (Chung
et al., 2014)
• Approximate Information State (AIS, Sub-

ramanian and Mahajan (2019))
• Neural Controlled Differential Equations
(CDE, Kidger et al. (2020))
• Decoupled Dynamics Module
(DDM, Zhang et al. (2018))
• Deep Signature Transforms (DST, Bonnier

et al. (2019))
• And the ODE-RNN (ODE, Rubanova et al.
(2019))

These approaches are depicted in Figure 2.
We also compare these approaches to a simple
non-recurrent Autoencoder (AE). A compara-
tive overview of the features that differentiate
each approach as well as specific details about
how each are trained are presented in Sec. B
of the Appendix.

The unifying feature among these approaches
is the development of a latent representation
space Ŝ that encodes information about the
patient observations made over time. The
formation of Ŝ is meant to develop informa-
tive representations to facilitate better down-
stream policy learning, by implicitly account-
ing for the history Ht,t−1. That is, we seek to
develop a strategy to select treatments based
on the encoded history via the learned state
representation: At ∼ π(Ŝt|Ht,t−1). Through
the remainder of this work, we evaluate the
characteristics of the representations embed-
ded in Ŝ.

Model training: We separate the data into
a 70/15/15 train/validation/test split using
stratified sampling. This maintains the same
proportions of each terminal outcome (sur-
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Figure 2: The architectures used to construct state representations via predicting future observations.
a) basic RNN autoencoder b) Approximate Information State (Subramanian and Mahajan, 2019) c)
Neural CDE (Kidger et al., 2020) d) Decoupled Dynamics Module (Zhang et al., 2018) e) Deep Signature
Transform (Bonnier et al., 2019) f) ODE-RNN (Rubanova et al., 2019) g) a non-recurrent Autoencoder. See
Table 3 in Appendix, Section B for a summary.

vival or mortality), and ensures that no pa-
tients are repeated across splits. All models
were trained for the same number of epochs,
using a variety of learning rates and 5 ran-
dom initializations. The final settings for each
model architecture are provided in the Ap-
pendix, Section B.

4.3. Augmenting the learning
process

In hopes of ensuring that the intermediate
state representations Ŝt retain clinically rele-
vant features, we investigate augmenting the
training of the representation space S through
a combination of two options: (1) Include the
demographic context features D (e.g. age,
gender, etc.) as input to the encoder function
ψ. When training with this option the history
Ht,t−1 contains observations O+

i = [Oi,Di].
(2) Regularize the loss function by the Pearson
correlation between the state representation
and a set of acuity scores derived from the
patient observations. We utilize three inde-
pendent acuity scores — SOFA, SAPS II and
OASIS — through a linear combination of the
correlation coefficients to subtract from the
loss. The complete objective function when
using this form of regularization is then,

Loss = L(Ot+1, Ôt+1)− λ ρ(Ŝt)

where λ ρ(Ŝt) = λ1 ρ
SOFA(Ŝt)+λ2 ρ

SAPS II(Ŝt)+

λ3 ρ
OASIS(Ŝt). We choose the hyperparame-

ter λ so that the final prediction loss of the
regularized model is not inordinately larger
than its unregularized counterpart. Addition-
ally, we set λ1 = λ2 = λ3 for simplicity in
this paper yet these hyperparameters could be
chosen independently of one another.

4.4. Policy development

We train policies on each of the learned state
representations outlined in Section 4.2. As
we do not have the ability to generate more
data through an exploration of novel treat-
ment strategies, we develop a policy using
offline, batch reinforcement learning. In this
setting, it is critical that the estimated value
function not extrapolate to actions that are
absent from the provided data (Gottesman
et al., 2019). To avoid this extrapolation er-
ror Fujimoto et al. (2019b) developed an algo-
rithm that truncates any Q-function estimate
corresponding to actions that fall outside the
support of the dataset. This algorithm, Batch
Constrained Q-Learning (BCQ), originally de-
signed for continuous control problems was
later adapted for use in discrete action set-
tings (Fujimoto et al., 2019a).
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We use this discretized BCQ algorithm to
learn treatment policies from state represen-
tations Ŝ. We train the policies using the en-
coded training subset of our data and validate
the performance with the testing subset using
weighted importance sampling (WIS), follow-
ing Li et al. (2019). The WIS return for each
policy throughout training is computed by:
RWIS =

∑N
n wnRn∑N
n wn

, where the wn are the per-
trajectory IS weights and Rn is the observed
outcome of the trajectory. All further details
regarding policy training and intermediate
results are provided in Section D.1.

5. Empirical Study

We evaluate the representations Ŝt learned
from patient data following the three ex-
periments outlined at the conclusion of Sec-
tion 1. All analyses and results reported
through the remainder of this section are
provided using only the test set of the pa-
tient cohort. All code used to extract
and preprocess the data, train and evalu-
ate the encoding models as well as the poli-
cies can be found at https://github.com/
MLforHealth/rl_representations.

5.1. Representation dimension in SO
prediction

We evaluate the accuracy of predicting the
SO Ot+1 from Ot and At. Our primary inves-
tigation considers the effect of varying the di-
mension d̂s of the learned state representation
Ŝt from the set d̂s ∈ {4, 8, 16, 32, 64, 128, 256}.
Other than varying the latent dimension in
each run, we keep all other model and op-
timization hyperparameters constant. This
experiment evaluates the information capac-
ity needed in the state representation Ŝt to
adequately predict the SO.

Figure 3: Mean squared error for SO prediction as
a result of varying d̂s, comparing various training set-
tings. Error bars are twice the std. dev. of each model
over 5 random seeds. We note that augmenting the
input to the encoding function ψ with demographic
context generally improves prediction performance.
See Table 1 for the best performing settings.

Results from these models, learned through
the described training settings, are presented
in Figure 3 and Table 1. We see that the pre-
diction performance of these models saturates
as the dimension increases beyond 64, with
the test loss increasing with larger representa-
tions. Aside from DST, the best performing
settings of all other approaches converge be-
tween a loss of 0.46 and 0.48. This indicates
that the highest capacity representations may
not be the most informative for this prediction
task.

5.2. Augmenting learning in SO
prediction

We evaluate the two proposed training aug-
mentations (see Sec. 4.3) — adding demo-
graphic features D during training, and regu-
larizing Ŝ to be correlated with SOFA, SAPS
II and OASIS — via the accuracy of predict-
ing the SO Ot+1 from Ot and At.
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When augmenting the input to the encoding
function ψ with demographic context D the
prediction performance is generally improved
(see the dashed curves in Figure 3). In con-
trast, the performance slightly degrades when
the learned representations are regularized
to be correlated with acuity scores (see the
dotted and dot-dash lines in Figure 3), ex-
cept for the DDM and DST models where
there is a noticeable negative effect on model
performance.

Table 1: Optimal model settings for each approach
when predicting the SO. Models are trained with ob-
servations O and can be augmented with demographic
context D or by the correlation regularization C.

Approach Best MSE d̂s Training Setting

AE 0.4804±0.001 64 w/ O +D

AIS 0.4679± 0.004 64 O +D
CDE 0.4887± 0.019 32 O +D
DDM 0.4654± 0.002 128 O +D
DST 0.5863± 0.013 64 O
ODE 0.4698± 0.003 32 O +D
RNN 0.4658± 0.002 64 O +D

5.3. Qualitative analysis

The following analyses investigate the qualita-
tive impact that the separate training strate-
gies have on learned representations.

Representation-to-acuity score correla-
tion We first evaluate the average correlation
coefficient between the representations and
derived acuity scores (see Section A.3 for more
information). This is to demonstrate the ca-
pacity of the representations Ŝt to maintain
clinically relevant information. We perform
this analysis with and without the correlation
regularization described in the previous sub-
section. The intention of this regularization
is that the more positively correlated the rep-
resentation is to the acuity scores, the more
clinically informative the learned representa-
tion is. This was designed in hopes to improve
SO prediction and policy learning yet there

was no demonstrated advantage in doing so
as shown in Figure 3 and Figure 14.

Figure 4: The average Pearson correlation coefficient
between the state representations from each encoding
approach and acuity scores. Shown here are the aver-
age coefficients when regularizing the learning process
and demographic features are omitted (left) or are in-
cluded (right) as input. For SAPS II and OASIS, the
inclusion of demographic features when constructing
the state representations results in higher correlation.

We show the average correlation coefficients of
the learned state representations with acuity
scores in Figure 4 for the two training set-
tings where regularization is included (with
and without demographic context). Unregu-
larized representations fail to encode informa-
tion that is correlated with the acuity scores
(see Figure 15 in the Appendix). Between the
two settings, representations are better corre-
lated with the acuity scores when a patient’s
demographic context is included. This sug-
gests that clinical acuity scores are strongly
entangled with demographics features. Fur-
ther investigation into the effects of this en-
tanglement, including questions of fairness, is
outside the scope of this study and is therefore
a suggested element of future work.

Visualizing learned state representa-
tions Next, we use principal component anal-
ysis (PCA) to project the learned represen-
tations into a lower dimensional space. PCA
embeddings are fit using the encoded repre-
sentations for the entire test set but only the
first and final representation from a patient
trajectory are vizualized. To aid in connect-
ing these two points, we have drawn a line
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Figure 5: Representations of patient health, learned through a non-recurrent autoencoder (AE), Approximate
Information State (AIS), a Neural CDE (CDE) and an ODE-RNN (ODE) (left-to-right, all other approaches
are included in the Appendix, Section D.3) for two training settings. We show the first and final observations
made of septic patients in the MIMIC-III dataset, colored by the SOFA score. Blue lines represent the
trajectory of patients who recovered, while red lines connect observations of those those that did not.

between them colored by the patient outcome,
survival (blue) vs. death (red).

As shown in Figure 1, PCA projections of raw
observations are not separable. Separability
is desirable because a representation that sep-
arates patients who are most at risk of death
could be used to more easily facilitate pre-
diction models. In Figure 5 we show PCA
projections for AE, AIS, CDE and ODE in
two training settings (remaining approaches
and training settings in the Appendix, Sec-
tion D.3). We focus on the role of including
demographics without acuity regularization
(top), and when it is included (bottom). With
exception of AIS, regularization provides bet-
ter separation between the patients that sur-
vive their sepsis infection and those that do
not. Additionally, the regularization com-
presses the feature space of some encoding
approaches. In combination with findings in
Section 5.1, this compression suggests that the
information prioritized via acuity regulariza-
tion does not contribute to an improved state
representations despite improved separability
in representation space. Further analysis of
the information content stored in the represen-

tations as a consequence of being regularized
to correlate with acuity scores is a subject of
future work.

5.4. Policy training and
evaluation

We investigate the quality of treatment poli-
cies learned from the state representations via
the approaches outlined in Section 4, following
the procedure outlined in 4.4. We train poli-
cies using discretized BCQ, and evaluate with
weighted importance sampling (WIS).

In Figure 6 we present the best perform-
ing policies learned from state representa-
tions. For each approach, excepting ODE,
the top policies were learned from representa-
tions trained with the demographic context
included as input to the encoding function
ψ. The best ODE policy was developed from
representations learned from the observations
alone (see Figure 14 in the Appendix).

Among the various approaches, policies
learned from representations encoded by the
Neural CDE (CDE) far outperform the others.
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Figure 6: WIS evaluation of policies trained from the
representations encoded by the architectures outlined
in Section 4. Policies are trained from an experience
replay buffer comprised of the training batch of patient
trajectories for 200k iterations, evaluating the trained
policy every 500 iterations. Results presented here
are averaged over 5 random seeds, the shaded region
measures a single standard deviation across seeds.

Simpler recurrent based architectures such as
AIS and RNN also obtain higher performance
than the non-recurrent autoencoding base-
line (AE). These results contribute toward
the validation of our empirical hypothesis,
that recurrent architectures provide better
state representations in sequential partially
observed settings. However, the AE based
policy still learns a better policy than those
based from far more complex methods (DST,
DDM and ODE) signifying that the represen-
tations from these methods did not adequately
encode sufficient information to learn a pol-
icy from in the batch setting, possibly due to
dataset limitations.

6. Discussion

In this paper we have empirically evaluated
seven information encoding approaches to de-
velop sequential state representations of pa-
tient health, useful for learning effective treat-
ment policies. We performed several experi-
ments to determine characteristics useful for

training state representations from noisy pa-
tient data that is inherently partially observed.
To support the formation of informative rep-
resentations we designed a supervised task
where the representation implicitly encodes
a history Ht,t−1 of previous observations and
actions to predict the next SO. This auxiliary
task allowed us to investigate several proper-
ties of the representation space Ŝ based on
decisions of how to execute the training.

In Section 5.1 we showed that higher dimen-
sional representations reduce prediction ac-
curacy, indicating the high capacity repre-
sentations are not the most informative. In
tandem we demonstrated that the inclusion
of demographic context improves the learned
state representations. This was verified (see
Section D.1) when learning treatment poli-
cies. The best performing policies for each
information encoding approaches presented in
this paper were trained from representations
learned with demographic context.

Future work In future work we intend to
explore the use of multi-task learning (McDer-
mott et al., 2020; Lin et al., 2019) to jointly
train the representation space. Additionally,
we plan to investigate methods that incor-
porate indicators of feature missingness and
other underlying contextual variables (Agor
et al., 2019; Fleming et al., 2019; Sharafoddini
et al., 2019; Che et al., 2018; Lipton et al.,
2016). We intend to study the effect these
approaches have on the representation space,
including a quantification of any performance
reductions that may arise through use of de-
mographic information encoding bias in the
representations (Chen et al., 2018a).

The class of Neural Differential Equation
methods (Chen et al., 2018b; Rubanova et al.,
2019; Kidger et al., 2020) were developed to
account for irregular time series with miss-
ing values and have demonstrated high per-
formance in prediction tasks when provided
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feature sets with varying rates of missing-
ness. Following the analyses performed in
this paper, the Neural CDE appears promis-
ing for constructing state representations in
the midst of the missingness and other irreg-
ularities inherent in healthcare data.

The conceptual separation between represen-
tation learning and policy learning in this
paper was motivated by prior literature on
state representation learning (Raffin et al.,
2019). This choice allowed us to focus on the
formation and analysis of the representation
space Ŝ. Another reason for this design choice
was to enable straightforward use of current
state of the art batch RL training algorithms.
However, this decoupling is not necessary for
developing off-policy sepsis treatment policies
as discussed and demonstrated by Li et al.
(2020). Another line of future work utiliz-
ing the findings of this paper is to similarly
develop an end-to-end policy development ap-
proach that combines the objectives of the
auxiliary tasks and RL algorithm, explicitly
accounting for the state representation space
as it encodes features of the expected outcome
via the RL objective.

Additionally, it is necessary to more fully eval-
uate and interpret what the learned state
representations encode and whether clinically
relevant relationships are preserved (Bai et al.,
2018). It will be beneficial for the future use
of these state representations to determine
whether they embed trends in the data fol-
lowing the improving (or degrading) health
of the patient beside only encoding features
relevant for inferring the SO.

Conclusion Such investigations and state
representation learning will provide mecha-
nisms by which we can better understand
the cumulative effects of prescribed actions,
chosen by following observed or learned poli-
cies. State representations and learned value
functions used in this manner can enable the

identification of reliable treatment policies,
developed following a learning process that
acknowledges the sequential and partial na-
ture of the observations that are made.

This paper recommends possible ways of
thinking of representation learning as a form
of auxiliary task within policy development.
Among the various research directions that
are natural extensions from this work, we
affirm the necessity of thoughtfully design-
ing the representation learning process to
honor the partial and sequential nature of
the data generating process. These opportu-
nities for learning optimal state representa-
tions for RL in healthcare offer an exciting
new area of research that we anticipate be-
ing fruitful for establishing future advances in
clinically relevant sequential decision making
problems.
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Appendix A. Details about Patient
Cohort

A.1. Data extraction and
preprocessing

To construct our patient cohort from the MIMIC-
III database,we follow the approach described
by Komorowski et al. (2018) and the associated
code repository given in Komorowski (2018). This
includes all adult patients (aged 18 years and
older) in the intensive care fulfilling the sepsis 3
criteria. A presumed onset of sepsis is defined
by temporally related prescription of antibiotics
and test results from microbiological cultures. All
patient observations are extracted in a 72h span
around this presumed onset of sepsis (24h be-
fore presumed onset to 48h afterwards). The
original cohort extracted by Komorowski et al.
(2018) contained a set of 48 variables including
demographics, Elixhauser status, vital signs, lab-
oratory values, fluids and vasopressors received
and fluid balance. Missing or irregularly sampled
data was filled using a time-limited sample-and-
hold approach based on clinically relevant periods
for each feature. All values that remained miss-
ing after this step were imputed using a nearest-
neighbor approach. After imputation, all features
are z-normalized.

Observed actions (administration of fluids or vaso-
pressors) are categorized by volume and put into
5 discrete bins per action type. The combination
of the type of actions leads to 25 possible discrete
actions.

A.2. Features used in this paper

As described in Section 3, we only maintain fea-
tures that correspond to continuous quantities,
the evolution of which may result from the se-
lected actions. Those columns we remove from
the original extracted cohort by Komorowski et al.
are intended to be added to the learned state repre-
sentations used for developing treatment policies.
We include the patient features used in this paper
in Table 2.

A.3. Acuity Scores

Patient acuity scores are used in clinical practice
to estimate the severity a patient’s illness, and
have historically been used as a predictor of mor-
tality (Silva et al., 2012). In order to constrain
the learning of state representations we extract
three acuity scores computed from the full pa-
tient observations from each 4h time step (Hug
and Szolovits, 2009): Sepsis-related Organ Failure
Assessment (SOFA) (Vincent et al., 1996), Simpli-
fied Acute Physiology Score II (SAPS II) (Le Gall
et al., 1993b) and Oxford Acute Severity of Illness
Score (OASIS) (Johnson and Mark, 2017). For
the particular heuristics used to calculate these
scores, we refer the reader to the originating liter-
ature sources.

A.3.1. Sepsis-related Organ Failure
Assessment - SOFA

The Sepsis-related Organ Failure Assessment
score was developed to provide clinicians with
an objective measure of organ dysfunction in a
patient. The score is evaluated for 6 organ sys-
tems: pulmonary, renal, hepatic, cardiovascular,
haematologic and neurologic. Under the Sepsis-3
criteria, a patient is presumed to be septic if the
SOFA score increases by 2 or more points.

A.3.2. Simplified Acute Physiology
Score II - SAPS II

The Simplified Acute Physiology Score II (SAPS
II) was developed to improve issues with SAPS, a
simplified score using 13 physiological parameters.
These parameters were chosen using univariate
feature selection to exclude features uncorrelated
with hospital mortality.

A.3.3. Oxford Acute Severity of
Illness Score - OASIS

The Oxford Acute Severity of Illness Score (OA-
SIS) is a severity score developed algorithmically
which directly optimized for clinical relevance, si-
multaneously performing multivariate feature se-
lection. OASIS requires only 10 features, without
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Table 2: Observed features used for learning state representations

Time-varying continuous features

Glascow Coma Scale Heart Rate Sys. BP
Dia. BP Mean BP Respiratory Rate
Body Temp (C) FiO2 Potassium
Sodium Chloride Glucose
INR Magnesium Calcium
Hemoglobin White Blood Cells Platelets
PTT PT Arterial pH
Lactate PaO2 PaCO2
PaO2 / FiO2 Bicarbonate (HCO3) SpO2
BUN Creatinine SGOT
SGPT Bilirubin Base Excess

Demographic and contextual features

Age Gender Weight
Ventilation Status Re-admission status

Figure 7: A basic RNN architecture for SO predic-
tion

depending on laboratory measurements, diagnosis
or comorbidity information.

Appendix B. Architecture
Details

We provide a comparative overview of the fea-
tures that differentiate each approach in Table 3.
Specific details about each architecture and how
they are trained is included in the following sub-
sections.

B.1. RNN

Recurrent Neural Networks (RNNs) are exten-
sions of conventional feed-forward neural networks
capable of receiving correlated sequences as input.
The RNN handles variable-length sequences by
utilizing a recurrent hidden state, activated by
features propagated from the previous timestep.
When provided an observation Ot from a sequence,

the RNN updates its recurrent hidden state ht
by a nonlinear function that associates the Ot

with ht−1. Initially, this hidden state is set to
a vector of zeros. This hidden state, an embed-
ding of the prior sequence of observations, can
then be used to make predictions of various kinds
depending on the specific context the model is
trained for. See (Chung et al., 2014; Jozefowicz
et al., 2015) for a more detailed introduction to
such networks.

For predicting the SO in healthcare settings we
make the following adjustments to a basic RNN
architecture, shown in Figure 7. The current
observation Ot is concatenated with the selected
action and passed into the RNN along with the
hidden state representation from the previous
time step Ŝt−1. The hidden state representation
Ŝt is then passed to a decoder function φ that
provides the prediction of the SO Ôt+1.

We use a 3-layer Recurrent Neural Network (RNN)
for estimating the encoding function ψ, where the
first layer is a fully connected layer that maps
the current observation and action (58 dimen-
sional input: 33 dimensional observation with
a 25 dimensional one-hot encoded action) to 64
neurons with ReLU activation. This is followed
by another (64, 128) fully connected layer with
ReLU activation which is followed by a GRU
layer (Cho et al., 2014) with hidden state size d̂s
chosen from {4, 8, 16, 32, 64, 128, 256}. For esti-
mating the decoder function φ, we use a 3-layer
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Table 3: Overview of approaches for state representation learning under evaluation

Approach Recurrent Sequence as input Num. Parameters

AE 27k − 76k

AIS 7 28k − 339k

CDE 7 7 78.9k − 1.78m

DDM 7 6k − 1.25m

DST 7 7 47k − 256k

ODE 7 48.3k − 329k

RNN 7 26k − 337k

feed-forward neural network with sizes (d̂s, 64),
(64, 128) and (128, 33) with ReLU activation for
the first two layers. The last layer outputs a 33-
dimensional vector, which forms the mean-vector
of a unit-variance multi-variate Gaussian distribu-
tion which is then used to predict the SO.

The best RNN architectures for each choice of
d̂s were trained for 600 epochs with a learning
rate of 1e− 4. The λs for regularizing the train-
ing to correlate with acuity scores are all set to
100.

B.2. AIS

The Approximate Information State (AIS) (Sub-
ramanian and Mahajan, 2019) was introduced as
an approach to learning the state representation
for POMDPs for use in dynamic programming.
The learned representation is defined in terms of
properties that can be estimated from data, so it
lends itself to be used in model pipelines where the
state is used for some downstream task. The func-
tion ψ is comprised of an encoder followed by a
gated recurrent unit (Cho et al., 2014) which out-
puts the representation Ŝt. The input to ψ is the
concatenation of the observation Ot and last se-
lected action At−1. The current action At (which
is typically induced from the policy, conditioned
on Ŝt) is concatenated to the state representation
Ŝt and then fed through the decoder function φ
to predict the SO Ôt+1.

AIS uses the same base architecture as the basic
RNN with one adjustment. For the decoder func-
tion φ we augment the input space by appending

Figure 8: AIS architecture, adapted from Subra-
manian and Mahajan (2019)

the current action At to the state representation
St. Therefore the AIS decoder function φ, consti-
tutes a 3-layer feed-forward neural network with
sizes (d̂s + 25, 64), (64, 128) and (128, 33) with
ReLU activation for the first two layers. The
last layer outputs a 33-dimensional vector, which
forms the mean-vector of a unit-variance multi-
variate Gaussian distribution which is then used
to predict the SO.

The best AIS architectures for each choice of d̂s
were trained for 600 epochs with a learning rate of
5e−4. The λs for regularizing the training to cor-
relate with acuity scores are all set to 100.

B.3. DDM

Zhang et al. (2018), introduced an model-based
RL algorithm that decoupled dynamics and re-
ward learning. This decoupling aimed to improve
the generalization and stability of RL algorithms
operating in environments where perturbations
to the observations may occur. The dynamics
module utilizes recurrent models to associate se-
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Figure 9: The Decoupled Dynamics Module
from Zhang et al. (2018), adapted from its
original presentation

quences of prior observations and their affect on
subsequent observations.

We adapt this module, shown in Figure 9, for
the purpose of predicting the SO in a health-
care setting. The observation Ot is provided to
an encoder ψenc the output of which is concate-
nated to the selected action At and fed into an
LSTM (ψLSTM) (Hochreiter and Schmidhuber,
1997) which provides the state representation Ŝt.
This state representation is then provided to the
decoder function φ to provide a prediction of the
SO Ôt+1. To stabilize the development of this
learned state representation, Ŝt is also fed to an
inverse dynamics function (denoted by "Inverse"
in Fig. 9) along with the true SO to predict the
action used to generate Ŝt.

For specific details about the set-up and training
of decoupled dynamics module (DDM), we refer
the reader to Zhang et al. (2018)3.

The DDM archtecture is made up of three mod-
ules, an encoder (ψenc), a dynamics module
(ψLSTM), and a decoder (φ). These three modules
combine to both create a latent embedding space
for the state representations Ŝ while also decod-
ing these representations to predict the SO. The
encoding function ψenc is comprised of a 3-layer
feed-forward neural network with sizes (33, d̂s),
(d̂s, 288), (288, d̂s). The first two layers are fol-
lowed by exponential linear unit (ELU) activation
functions. The final layer is passed through a

3. The author’s code can be accessed at https://
github.com/facebookresearch/ddr

tanh activation and provided as output to the
dynamics model ψLSTM .

The dynamics module ψLSTM receives as input
the encoded observation and SO, zt = ψenc(Ot),
zt+1 = ψenc(Ot+1) respectively the current action
At and two separate hidden state vectors that
describe the distribution of the latent distribution
Ẑ that the encoder produces estimates of with
each observation. The dynamics module ψLSTM
begins with two linear layers of sizes (25, d̂s) and
(d̂s, d̂s), the first of which has an ELU activation
function. These layers embed the action At. This
embedding is concatenated with the encoded ob-
servation zt and passed through a linear layer with
shape (2 ∗ d̂s, d̂s). The output of this embedding
is then passed to a LSTM Cell with input di-
mensions of dimension d̂s and produces the mean
and variance vectors of the latent distribution,
each of size d̂s. The mean vector is then passed
through a tanh activation function and provided
as an estimate of the encoded SO ẑt+1. Finally,
the dynamics module infers the action At that
caused the transition between the encoded zt and
zt+1. These encoded representations of the obser-
vations are concatenated and passed through a
2-layer fully connected neural network, the first
layer with shape (2 ∗ d̂s, d̂s) followed by an ELU
activation with the second layer having shape
(d̂s, 25).

The decoder function φ is a 3-layer fully connected
neural network. The first two layers have the
shapes (d̂s, 288), (288, d̂s) each followed by ELU
activation functions. The final layer has the shape
(d̂s, 33). The decoder φ takes the predicted subse-
quent encoded observation (ẑt+1, which we use as
our learned state representation) as input. The
function outputs a 33-dimensional vector which
is the prediction for the SO Ôt+1.

The best DDM architectures were trained for 600
epochs with the following learning rates for each
choice of d̂s;
{4 : 1e − 3, 8 : 1e − 4, 16 : 1e − 4, 32 : 5e −
4, 64 : 1e− 4, 128 : 1e− 4, 256 : 1e− 4} The
λs for regularizing the training to correlate with
acuity scores are all set to 0.25.
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Figure 10: The Deep Signature Transform architec-
ture for SO prediction

B.4. DST

As outlined by Bonnier et al. (2019), sequentially
ordered data can have path-like structure. The
statistics of such a path can be represented by
the signature (Chevyrev and Kormilitzin, 2016).
The mapping between a path and its signature
is known as the signature transform. Neural net-
work architectures that utilize such transforms
may be capable of adequately handling irregularly
sampled time-series data from partially observable
environments such as those in healthcare.

The signature transform SigN is defined by an
infinite sequence where N roughly corresponds to
the order of approximation of matching moments
of a distribution. In practice, SigN is truncated
to include a finite number of elements. The choice
of N and the dimension d of the data points of
the sequence influence the subsequent number
of terms in the truncated signature as |SigN |=
dN+1−1

d−1 .

We set-up a signature transform for predicting
the future observations in a healthcare setting
as shown in Figure 10. We pass the sequence
of observations τj,0:t = {O0, . . . , Ot} up to the
current time through a pointwise encoder ψ. The
resulting sequence ψ(τj,0:t) is processed by the
signature transform SigN (ψ(τj,0:t)) of order N .
This sequence is then passed through a recurrent
neural network to produce the learned state rep-
resentation Ŝ0:t. This state representation is then
passed through the decoder φ to predict the SO
Ôt+1.

Implemented using the Signatory library4, this
is essentially equivalent to using the signature
transformation as a stream preserving non-linear
transformation layer in a neural network.

4. https://github.com/patrick-kidger/
signatory

Figure 11: The ODE-RNN architecture for SO
prediction

Recently, signature transforms have been incorpo-
rated into modern neural network architectures
and have been shown to have great promise in
a variety of learning paradigms (Bonnier et al.,
2019). Notably, a model architecture utilizing a
signature transform for sepsis prediction won the
2019 Physionet challenge (Morrill et al., 2019).
The success of such a model demonstrates that
such transforms may be capable of adequately han-
dling irregularly sampled time-series data from
partially observable environments.

In the encoder, we start with two pointwise one-
dimensional convolutional layers (with a kernel
size of 1) to add 8 augmented features to the 63
dimensional input vector. We then apply a stream
preserving signature transformation with a depth
of 2. The latent states are obtained by passing
the output of the signature transform through a
2 layer GRU with dim hidden units, where dim
is the chosen embedding dimension.

For estimating the decoder function φ, we again
use two pointwise one-dimensional convolutional
layers (with a kernel size of 1) with filter sizes of
64 and 32 respectively. Then, we apply a stream
preserving signature transformation of depth 2.
Finally, We use a pointwise 2-layer feed-forward
neural network with sizes (|SigN |, 64), and (64, 33)
with ReLU activation.

The best DST architectures for each choice of d̂s
were trained for 50 epochs with a learning rate
of 10−3. The λs for regularizing the training to
correlate with acuity scores are set to 1.

B.5. ODE-RNN

Rubanova et al. (2019) generalize the latent tran-
sitions between observations inside an RNN to a
continuous time differential equation using neural
networks, building from the Neural ODE (Chen
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et al., 2018b) framework. An ODE-RNN is a re-
current neural network where the hidden states
between observations evolve according to a pa-
rameterized ODE5.

Although ODE-RNNs are natively able to handle
missing values and irregularly sampled time series,
for the purposes of this paper, we still use imputed,
time-binned data for this model.

For the encoder, we use a GRU with 50 units,
where the hidden states between observations are
modelled by a Neural ODE parameterized by a
2-layer MLP with 50 hidden units. We use the
adaptive stepsize dopri5 solver. For the decoder,
we use an MLP applied at each time step, consist-
ing of 3 layers, with sizes (dim, 100), (100, 100),
(100, 33) and ReLU activations.

The best ODE-RNN architectures for each setting
of d̂s were trained for 100 epochs with a learning
rate of 10−3. The λs for regularizing the train-
ing to correlate with acuity scores are all set to
1.

Note that though latent ODE representations
have shown better performance in representing
time series data, we do not believe that a latent
ODE is appropriate for this task. This is because
the encoder of a latent ODE involves an ODE-
RNN running backwards in time over the inputs
to obtain a probability distribution over z0. Thus,
the initial latent state would contain information
about all subsequent observations and actions
(similar to if a bidirectional RNN were used). A
sampled value of z0 is then used as the initial
condition in a Neural ODE to solve for z1:T . This
information leakage would result in an unrealistic
estimate of the SO prediction error.

B.6. CDE

Similar to ODE-RNNs (Rubanova et al., 2019),
Neural Control Differential Equations (CDEs)
(Kidger et al., 2020) model temporal dynamics by
parameterizing the time derivative of the hidden
states by a neural network. Unlike ODE-RNNs,
the hidden states in CDEs evolve smoothly as a

5. To implement the ODE-RNN, we use the
code available at https://github.com/
YuliaRubanova/latent_ode

Figure 12: The Neural CDE architecture for SO
prediction

Figure 13: The Autoencoder architecture

function of time, even at time points when data is
observed. To accomplish continual dependence on
the data throughout the latent trajectory, cubic
spline interpolation is used, and the network op-
erates on pre-computed cubic spline coefficients
instead of the actual observations. The initial
value for the latent space is calculated by a linear
map on the inputs at t = 0. It has been shown
that CDEs are universal approximators from se-
quences in RD to real valued targets.

For the encoder, we use a Neural CDE parameter-
ized by an MLP with four hidden layers, each of
which has 100 hidden units. We use ReLU activa-
tion for the hidden layers, and a tanh activation
for the final layer. For the decoder, we use an
MLP applied at each time step, consisting of 3
layers, with sizes (dim, 100), (100, 100), (100, 33)
and ReLU activations.

The best CDE architectures for each setting of d̂s
were trained for 200 epochs with a learning rate of
2× 10−4. The λs for regularizing the training to
correlate with acuity scores are all set to 1.

B.7. Autoencoder

To isolate the contribution of the recurrent layer
in the RNN (Sec. B.1), we also evaluate a simple
autoencoder that replaces that layer in the en-
coding function ψ with a fully connected layer to
produce the state representation Ŝt. As is done
with AIS (Sec. B.2), we concatenate the current
action At to Ŝt when predicting the SO Ôt+1

using the decoder function φ. The autoencoder
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architecture shown in Figure 13 was trained using
same loss function as the RNN, AIS, and DST
approaches.

The autoencoder’s encoding function ψ is com-
prised of a three layer fully connected neural net-
work with ReLU activations with sizes (58, 64),
(64, 128), (128, d̂s) to produce the state represen-
tation Ŝt. To produce an approximation of the
SO, Ŝt is concatenated with the current action At

and passed to the decoding function φ, another
three layer fully connected neural network with
ReLU activations. The sizes of the layers com-
prising φ are (d̂s +25, 64), (64, 128) and (128, 33).
We train this model end-to-end using the loss
function, with the option to be regularized by the
correlation coefficient.

The best autoencoder models for each setting of
d̂s were trained for 600 epochs with a learning
rate of 5e−4. The λs for regularizing the training
were all set to 100.

Appendix C. State construction in
prior work

See Table 4 for an overview of how prior work
has constructed state representations for RL in
healthcare settings.

Appendix D. Additional
experimental
results

In this section we include a more exhaustive ac-
counting of the experimental results that did not
fit within the space constraints of the main body
of the paper.

D.1. Policy Training

We train policies on each of the learned state rep-
resentations outlined in Section 4.2. As we do not
have the ability to generate more data through
an exploration of novel treatment strategies, we
develop a policy using offline, batch reinforcement
learning. In this setting, it is critical that the es-
timated value function not extrapolate to actions

that are not present in the provided data (Gottes-
man et al., 2019). To counter this error caused by
extrapolation, Fujimoto et al. (2019b) developed
an algorithm for continuous control settings that
truncates any Q-function estimate correspond-
ing to actions that fall outside the support of
the dataset. This algorithm, Batch Constrained
Q-Learning (BCQ) was then adapted and sim-
plified by the authors for use in discrete action
settings (Fujimoto et al., 2019a).

As the patient cohort that we have to learn poli-
cies from is defined with discrete actions, we
use the simplified Batch Constrained Q-Learning
(BCQ) for discrete action settings (Fujimoto et al.,
2019a) to learn treatment policies from state rep-
resentations Ŝ. We train the policies using the
encoded training subset of our data, validating
the performance of the policy using the testing
subset via weighted importance sampling (WIS),
following Li et al. (2019). The WIS return for
each policy throughout training is computed by:
RWIS =

∑N
n wnRn∑N

n wn
, where the wn are the per-

trajectory IS weights and Rn is the observed out-
come of the trajectory.

WIS evaluation of policies trained from the repre-
sentations encoded by the architectures outlined
in Section 4. The Q-network used in our im-
plementation of BCQ was comprised of 3 fully
connected layers, using 64 nodes per layer (ex-
cepting for the DDM architecture where we used
128 nodes per layer). The learning rate was em-
pirically tuned for each training approach in a
log-uniform range of {1e − 5, 1e − 2}. The best
policies for all approaches, excepting CDE, used a
learning rate of 1e− 3. CDE used a learning rate
of 1e− 5. The BCQ action eliminiation threshold
τ was set to 0.3 for all experiments.

All policies were trained6 from a uniformly sam-
pled experience replay buffer comprised of the
training batch of patient trajectories for 200k it-
erations, evaluating the trained policy every 500
iterations using the testing subset of the patient
data.

The behavior policy used in WIS was derived via
behavior cloning using a two layer fully connected

6. We adpated Fujimoto et al. (2019a)’s code
which can be accessed at: https://github.com/
sfujim/BCQ/tree/master/discrete_BCQ
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Figure 14: A compilation of the policy learning curves for each representation training setting for all
encoding approaches investigated in this paper.

neural network trained with a supervised cross
entropy loss using the stored actions with corre-
sponding actions. WIS evaluation was performed
by using the observation drawn from the test set
of the patient data, predicting the observed ac-
tion using the approximated behavior policy and
then comparing with the inferred action provided
by the current policy trained with BCQ using
the corresponding state representation encoded
by the user’s choice of information encoding ap-
proach.

In Figure 14, we present the evaluations of policies
learned from the representations learned through
each information encoding approach. Each sub-
figure features the policy performance based on
the training strategy used to learn the state rep-
resentations.

D.2. Analysis of correlation coefficient
between representations and
acuity scores

Here we present in Figure 15 the average corre-
lation coefficients between the acuity scores and
learned state representations from the various
information encoding approaches. What is com-
pared here is the effect of representation learn-
ing process on the subsequent correlation coeffi-
cients.

D.3. PCA Figures

This section contains the nonlinear projection
using PCA of the state representations learned
from each approach. For simplicity, we only in-
clude the representations for the first and final
observations of each patient trajectory, colored
by the corresponding SOFA score. We also draw
lines connecting these points to help infer how
the patient’s health evolves, as demonstrated in
representation space. To aid this inference, we’ve
colored the lines according to patient outcome.
Blue lines signify patients who overcame sepsis
and survived. Red lines connect the observations
of those patients who died following complications
associated with their sepsis diagnosis.
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Figure 15: The average Pearson correlation coefficient between the state representations
from each encoding approach and acuity scores. Shown here are the average coefficients
when the representation learning process is unregularized (left), when demographic features
are omitted (center) or are included (right). The inclusion of demographic features when
constructing the state representations causes them to be more correlated. When the state
representations are uncoorelated. They fail to embed information directly correlated with
the derived acuity scores.

Figure 16: Representations of patient health, learned through an Autoencoder (AE)

Figure 17: Representations of patient health, learned through Approximate Information State (AIS)
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Figure 18: Representations of patient health, learned through the Neural CDE (CDE)

Figure 19: Representations of patient health, learned through the Decoupled Dynamics Module (DDM)

Figure 20: Representations of patient health, learned through the Deep Signature Transform (DST)
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Figure 21: Representations of patient health, learned through the ODE-RNN (ODE).

Figure 22: Representations of patient health, learned through a recurrent autoencoder (RNN)
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Table 4: State construction for RL in healthcare - background

Ref Domain State Construction

Hauskrecht and Fraser
(2000) Heart Disease Management 10 categorical variables + alive/dead;

constructed hierarchically

Guez et al. (2008) Epilepsy 114 dimensional continuous - summa-
rizing past EEG activity

Shortreed et al. (2011) Schizophrenia Treatment
20 demographic + 30 time varying;
imputed using fully conditional spec-
ification

Tsoukalas et al. (2015) Sepsis 9 states constructed from vitals based
on medical criteria

Nemati et al. (2016) Medication dosing
Estimated using discriminative hid-
den Markov model on 21 continuous
vitals + 6 binary demographics

Raghu et al. (2017a) Sepsis (MIMIC-III) Time augmented last observation (47
+ 1 = 48 dimensional)

Prasad et al. (2017) Weaning of mechanical ventila-
tion (MIMIC-III) Last observation (32 dimensional)

Parbhoo et al. (2017) HIV Treatment
7 hidden discrete physiological states
from Bayesian model-based RL over
80 observations

Komorowski et al.
(2018) Sepsis (MIMIC-III) Clustered state with 750 clusters

Raghu et al. (2018) Sepsis (MIMIC-III) k-Markov with k = 4; 198 = 4 × 47
dimensional state space

Li et al. (2018) Sepsis (MIMIC-III) 5 demographic + 46 time varying ;
modelled as Gaussian mixture

Peng et al. (2018) Sepsis (MIMIC-III)
Sequence embedding with RNN (128
dimensional hidden state from 43 fea-
tures)

Chang et al. (2019) Sepsis (MIMIC-III)
Last observation (39 dimensional ex-
tracted from time-series + 38 static
covariates)

Cheng et al. (2019) Lab testing (MIMIC-III)
Last observation (21 dimensional).
Data imputation done using a Multi-
output Gaussian Process framework.

Li et al. (2019) Sepsis (MIMIC-III) Auto-encoding SMC over 48 patient
variables
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