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Abstract

Multiple Sclerosis (MS) is a chronic, in-
flammatory and degenerative neurological
disease, which is monitored by a specialist
using the Expanded Disability Status Scale
(EDSS) and recorded in unstructured text
in the form of a neurology consult note.
An EDSS measurement contains an overall
‘EDSS’ score and several functional sub-
scores. Typically, expert knowledge is re-
quired to interpret consult notes and gen-
erate these scores. Previous approaches
used limited context length Word2Vec em-
beddings and keyword searches to pre-
dict scores given a consult note, but often
failed when scores were not explicitly stated.
In this work, we present MS-BERT, the
first publicly available transformer model
trained on real clinical data other than
MIMIC. Next, we present MSBC, a clas-
sifier that applies MS-BERT to generate
embeddings and predict EDSS and func-
tional subscores. Lastly, we explore com-
bining MSBC with other models through
the use of Snorkel to generate scores for
unlabelled consult notes. MSBC achieves
state-of-the-art performance on all metrics
and prediction tasks and outperforms the
models generated from the Snorkel ensem-
ble. We improve Macro-F1 by 0.12 (to
0.88) for predicting EDSS and on average
by 0.29 (to 0.63) for predicting functional
subscores over previous Word2Vec CNN
and rule-based approaches.

1 Introduction

Recent advancements of deep learning mod-
els with electronic health records (EHR) have
shown a great deal of success in many clinical
applications [42], such as disease detection [10],
diagnostics [11], risk predictions [16] and pa-
tient subtyping [7, 2]. However, when the data
within the EHR is presented in the form of nar-

rative, unstructured clinical notes, extensive
work is required by a professional to diagnose
and generate labels for a patient [37].
The development of pre-trained language mod-
els, namely Bidirectional Encoder Representa-
tions from Transformers (BERT), have signif-
icantly improved natural language processing
(NLP) tasks within the general language do-
main [15]. However, in specialized domains
such as the clinical one, the vocabulary, syntax
and semantics differ significantly from general
language [28] and thus pretraining a language
model on domain-specific texts is critical to im-
proving performance. This is supported by the
observed increase in performance on domain-
specific NLP tasks when pretraining a BERT
model on domain-specific texts [26, 34, 1, 3].
Take for example BlueBERT [34], which has
been further pretrained on over 4 billion words
from PubMed abstracts and 500 million words
from MIMIC-III [21] and has been shown to
outperform BERT on multilabel classification
from the Hallmarks of Cancers corpus [34].
Domain-specific language models, such as
BlueBERT, still face several challenges for
clinical NLP tasks. First, clinical texts must be
de-identified of sensitive information, with the
replacement of key tokens reducing the model’s
ability to interpret the text [30]. Second,
texts from a specific clinical application may
contain unique sub-language that the model
was not trained on, hindering the model’s
performance. Third, transformer models have
a fixed context length of 512 tokens that is
significantly shorter than the average length of
clinical texts [15]. As a result of truncating
the text to fit the context length, the model
is unable to analyze the entire text and may
miss important information. These are the
challenges of applying existing BERT models



to specific clinical NLP tasks, which we have
addressed through our contributions applied
to a multiple sclerosis (MS) dataset.

Our contributions are as follows:

[1] A publicly available BERT based
model pre-trained on over 70,000 MS consult
notes, which we call MS-BERT.

[2] A comprehensive pipeline for target
predictions that integrates MS-BERT into
a classifier, which we call MSBC. We apply
MSBC to two tasks: (I) prediction of EDSS
and functional subscores from neurological
consult notes of MS patients and (II) genera-
tion of labels for an unlabelled consult note
cohort.

[3] Methods for data de-identification
that preserves contextual information, opti-
mized for fixed-context length models.

[4] A novel approach to generate encounter
level embeddings for documents larger than
the BERT context window.

[5] Semi-supervised labelling pipeline us-
ing the Snorkel framework [39] that increased
the training data available for EDSS predic-
tion and provided a quantitative analysis
of silver-labelling strategies on real clinical
applications.

2 Methods

De-identification of clinical text. The con-
sult notes used in this study contained sensi-
tive information such as patient’s name, phone
numbers, physician’s name and address. We
de-identified the data using a curated database
of patient and doctor information and regular
expression matching. We replaced identify-
ing pieces of information with specific tokens
that met the following criteria: (1) the token
was within the current BERT vocabulary, (2)
the token had a similar semantic meaning to
the word it replaced, and (3) the token was
not found in the original data set. For exam-
ple, all last names were replaced with "Sala-
manca". In doing so, we aimed to limit the loss
of contextual information that results from de-

identification. We also overcame challenges
with sub-optimal placeholder replacements of-
ten present in clinical datasets, like MIMIC-III
[21]. As an example, MIMIC-III may replace
a patient’s last name with "[**LAST NAME
PLACEHOLDER**]", which is tokenized by
BERT into at least 7 tokens (one for each
square bracket, one for each star and at least
one for the place holder within the brackets).
A list of our de-identification replacements can
be found within the appendices (contribution
[3]).
MS-BERT. We used the de-identified con-
sult notes to pre-train a language model op-
timized for NLP tasks related to MS, namely
MS-BERT. MS-BERT is a BERT model that
uses BlueBERT [34] as its starting point, where
BlueBERT is a BERT model pre-trained on
PubMed abstracts & MIMIC III note cohorts
[21]. We used a masked language model-
ing (MLM) pre-training task [15] over all de-
identified consult notes. The task used the
bi-directional nature of the BERT model to
predict a series of randomly selected masked
tokens in a piece of text, allowing the model to
learn the contextual meaning of the words in
a sentence. This resulted in a language model
that is optimized for understanding MS con-
sult notes. The MS-BERT language model has
been made available for use and is publicly ac-
cessible. The pretrained MS-BERT model can
be found here (contribution [1]).
Encounter Level Embedding. We gener-
ated encounter level embeddings for each con-
sult note to address issues related to the limited
context length of transformer models. Most
transformer models have a context length lim-
ited to a number of sub-word tokens (512 in
case of BERT [15]); however, the consult notes
are often significantly longer. We separated
consult notes longer than the context length
into chunks of the maximum context length (in
our case the length was 512 tokens). We then
used MS-BERT to embed each chunk, result-
ing in a variable length output sequence of 768
dimensional vectors.
We explored 3 methods of converting the se-
quence of chunk level embeddings into a sin-
gular encounter level embedding: (1) taking
the average across the sequence; (2) taking
the max across the sequence; and (3) using a

https://huggingface.co/NLP4H/ms_bert


convolutional neural network (CNN) encoder
based on Zhang and Wallace [45] included in
the AllenNLP library. For more details see
Figure 1.
In preliminary testing, the first two options
under-performed the CNN encoder by a large
margin (∼60%), thus we proceeded with the
third option. Our final CNN encoder consists
of six 1D convolutions with kernels of size [2,
3, 4, 5, 6, 10] and 128 filters each for a total
of 768 dimensions in the output. This output
is our final note embedding. We compared
these full-length encounter level embeddings
to embeddings that were generated using only
a single context window (i.e. 512 tokens) and
found that encounter level summaries were crit-
ical to model performance.
1 MSBC. Finally, we developed a custom clas-
sifier named MSBC (Multiple Sclerosis BERT
CNN) to predict MS severity labels (EDSS or
a functional subscore) using MS-BERT. MSBC
is built using the AllenNLP [17] framework.
A breakdown of MSBC is as follows. MSBC
first reads in a consult note, tokenizes the text
using the BERT vocabulary and then splits
the tokens into chunks of size 512. MS-BERT
weights are applied to each token chunk and all
chunks for a note are then passed into the CNN
based sequence to vector (Seq2Vec) encoder de-
scribed above to pool the chunks and generate
an encounter level embedding (i.e. a 1D vec-
tor of 768). This encounter level embedding
is passed through 2 linear feed forward layers,
acting as a dimension reduction step, before
finally being passed to a linear classification
layer to predict a label for the note. Figure 1
shows an overview of MSBC’s architecture.
We trained and optimized MSBC for variables
of interest, namely EDSS and functional sub-
scores. Each note in the training set was passed
through MSBC as described above. The result-
ing label was compared to the target label and
a loss was computed. We used an AdamW op-
timizer to propagate errors back through the
model, with a learning rate of 0.0005, weight
decay of 0.01 and bias correction on a binary
cross entropy loss function. We treat this as
a classification problem instead of regression
because EDSS is not uniform i.e. the difference

1Code for our pipeline and experiments are available
here (contributions [2,4,5])

between 3 and 4 is not the same as 4 and 5.
We trained each model over 50 epochs using a
batch size of 5 with 4 gradient accumulation
steps. The model was saved at the end of each
epoch if it had the best value for the validation
metric. If during training the best validation
metric was not beaten within 5 epochs, the
trainer stopped early. A model for each pre-
diction task was generated using MSBC and
the train and validation sets described above.
Once trained, we evaluated performance on the
held out test set.
Semi-Supervised Labelling. Due to the
costs of manually reviewing and labelling clini-
cal texts, a significant majority of clinical texts
in EHRs remain unlabelled [18]. To leverage
the full potential of all clinical text available
and generate pseudo-labels for unlabelled data,
we explored semi-supervised labelling using the
Snorkel framework (v 0.9.3) [39]. Snorkel fa-
cilitates weak supervision of unlabelled data
given weak heuristics and classifiers (i.e. la-
belling functions or LFs) [38, 39]. Snorkel’s
Label Model, a generative model, combines
the predictions and generates a single confi-
dence weighted label per data point. Snorkel
does this by using the LFs’ observed agree-
ment and disagreement rates to estimate the
unknown accuracy of the LF’s. Snorkel then
learns and models the accuracies of the LFs
to combine the labels and generate the final
label per data point [40]. To identify the opti-
mal combination of LFs to label the unlabelled
notes, we evaluated the performance of task
predictions on various Snorkel ensembles. The
model that yielded the highest performance
on our validation-set was chosen to be used to
label the unlabelled notes.
We created two additional models using the
MSBC architecture: MSBC+, trained on a
combination of labelled and pseudo-labelled
data and MSBC-silver, which is a model
trained on only pseudo-labelled data. We pur-
sued the development of MSBC-silver as an at-
tempt to see if we could reconstruct our model
without access to the original labelled data,
similarly to Krishna et al. [24].

3 Experiments

Multiple sclerosis (MS) is one of the most com-
mon non-traumatic disabling neurological con-

https://github.com/NLP4H/MSBC


Figure 1: The MSBC architecture. We used a CNN described by Zhang and Wallace [45] to generate
encounter level embeddings.

dition among young adults worldwide [36, 43].
Onset of MS typically occurs between the ages
of 20 to 40 years, with women more often af-
fected than men [36]. MS is a disease that
impacts the central nervous system (CNS) [19],
leading to the degradation of myelin sheathing
and axons within the nervous system. This
degradation is highly varied and unpredictable
in both location and intensity within the body.
Resulting symptoms include but are not lim-
ited to: visual impairment, loss of balance,
numbness, bladder dysfunction and fatigue [6].
MS is typically monitored by the Expanded
Disability Status Scale (EDSS) [25]. EDSS is
used to evaluate the degree of CNS impairment
on a scale from 0 to 10. EDSS also includes
eight functional subscores [25] such as an am-
bulation score and a visual score. A full list
of functional subscores is found within Table 2
and their respective descriptions can be found
in the appendices.
EDSS and functional subscores are discussed
in a patient’s consult note, dictated by a physi-
cian and manually transcribed. EDSS is deter-
mined by a combination of functional subscores
and is typically stated within consult notes.
However, functional subscores are not typically
stated within a consult note and need to be
derived from contextual information about the
patient’s health. Traditionally, both EDSS and
functional subscores are manually derived by

an expert within the field and logged into the
patient’s health record. Minute differences in
patient descriptions can correspond to different
EDSS and functional subscore values. Through
consultation with MS healthcare professionals
we expect the qualitative descriptions of MS
symptoms contained within the clinical notes
to remain uniform across healthcare systems.

3.1 Data
The dataset, compiled by a leading MS research
hospital, contains approximately 70,000 MS
consult notes for about 5,000 patients, totaling
over 35.7 millon words. These notes were col-
lected from patients who visited this hospital’s
MS clinic between 2015 to 2019. Of the 70,000
notes approximately 16,000 are manually la-
beled by a research assistant for EDSS and
functional subscores. The gender split within
the dataset was observed to be 72% female and
28% male as shown in Figure 2 and reflecting
the natural discrepancy in MS [20].
Once de-identified, data was separated into la-
belled and unlabelled sets. The labelled set
was further separated into test (∼30%), train
(∼50%) and validation (∼20%) subsets. When
designing the splits for our data, we wanted to
ensure that we could accurately predict EDSS
and functional subscores on new notes for both
current and new patients and to reduce any
gender bias that may occur from population dis-



Figure 2: Distribution of EDSS scores varied by age and gender.

crepancy. First we stratified by gender. Then
we either fully contained the notes of one pa-
tient within a subset or divided the patients
notes across subsets chronologically. This al-
lowed for earlier notes to be used for training,
and later notes for validation and test. Due to
de-identification of notes the risk of information
leakage between subsets is minimized.

3.2 Experiment 1: EDSS and
Functional Subscore Prediction

Previous Work. Previous approaches to ex-
tract information from MS consult notes have
typically relied on keyword searches [14, 13].
We refer to the collection of these searches
as the rule-based (RB) approach. Word2Vec
embeddings used with a convolutional neural
network (CNN), have been shown to be suc-
cessful in clinical tasks such as creating explain-
able predictions of medical codes from clinical
text [32]. Previous work done at our affiliated
MS hospital used Word2Vec embeddings and
a CNN model to generate EDSS predictions.
Best results were achieved by incorporating the
RB approach with the Word2Vec CNN. This
method first used the RB approach to extract
keywords and phrases that infer EDSS scores.
If the RB approach was unable to predict a
score, then the prediction from the Word2Vec
CNN model was used. More information on the
development of the CNN model can be found
in the appendices. In this work, we compared
the performance on predicting EDSS and func-
tional subscores between the: (1) Word2Vec

CNN, (2) a sequential approach using RB plus
Word2Vec CNN, (3) MSBC, and (4) a sequen-
tial approach using RB plus MSBC.
Additional baselines were established with term
frequency-inverse document frequency (tf-idf)
features. These features have been successful
in various clinical NLP tasks [4, 33, 5]. A num-
ber of baseline models were developed on top
tf-idf features such as: support vector machines
(SVM), logistic regression (LR) and linear dis-
criminant analysis (LDA). Due to a lack of
performance on the easier task of predicting
EDSS scores (see Table 1), they were not evalu-
ated for the prediction of functional subscores.
Results. Our results for EDSS prediction are
summarized in Table 1 and functional scores
in Table 2. MSBC achieves top performance
in both tasks in all metrics. For EDSS pre-
diction, Macro-F1 and Micro-F1 are improved
upon by 0.11 and 0.043 respectively. For func-
tional subscore prediction, we see a significant
improvement of over 0.35 in Macro-F1 and al-
most 0.15 in Micro-F1.
Discussion. The significant improvement of
MSBC, especially in Macro-F1, indicates that
MS-BERT is better able to distinguish nu-
ances within text that characterize different
EDSS and functional subscores. Interestingly,
the Word2Vec CNN outperformed BlueBERT,
which is likely attributed to the fact that
Word2Vec was pre-trained on our corpus of text.
Also, our different method of de-identifying
data from MIMIC-III (which BlueBERT was



Table 1: EDSS prediction performance for all mod-
els. Higher values indicate stronger performance
and highest values are bolded.

Model Macro-F1 Micro-F1

Multiple Sclerosis Bert Classifier (MSBC) 0.88296 0.94177
MSBC Truncated (only first 512 tokens) 0.74680 0.90086
Rule-Based (RB) + Word2Vec CNN 0.76817 0.89668

RB + MSBC 0.86625 0.92987
Word2Vec CNN 0.66475 0.88144
RB 0.76694 0.83761
BlueBERT CNN 0.51000 0.81000
Linear SVC 0.48503 0.74452
LDA 0.50122 0.74390
SVC RBF 0.45877 0.72428
Log Reg 0.45763 0.71175

pre-trained on), may have reduced BlueBERT’s
effectiveness. However, the contextually similar
token replacement should limit this impact.
We see a strong improvement in functional sub-
score predictions over the baselines. While
EDSS is stated directly in notes, functional
subscores are typically referenced indirectly.
This makes it more difficult for a rule based
approach and simple models to learn the con-
textual information required to assess scores.
Furthermore, EDSS and functional subscores
also suffer from a high level of disagreement
among clinicians, particularly for the sensory
and mental categories [35]. The level of dis-
agreement typical is lower for EDSS scores
greater than 5.5 and in general does not exceed
1. At two clinics, examined EDSS scores dif-
fered by 0.5 for up to 29% of patients and by
1 for up to 50% of patients. This level of sub-
jectivity and variability within the true labels
may make it difficult for the model to predict
accurately. That said, due to the contextual
awareness brought by MS-BERT, MSBC shows
strong improvement from previous work when
predicting functional subscores. Additionally,
the labels for functional subscores were gen-
erated post-examination by trained clinicians
based on the contents of notes. Therefore, miss-
ing information from notes led to missing la-
bels for certain functional subscores, resulting
in varying levels of support for different scores.
MSBC under-performed on classes with low
support. The bottom 25% of classes in terms
of support averaged an F1 score of 0.78, which
was 0.1 lower than the mean for all classes.
However, classes with low support are typical
of EDSS due to its bi-modal distribution [29].

This is a result of the non-linear method of
determining EDSS based on certain heuristics
and conditions (i.e. the difference between an
EDSS score of 3 to 4, is not the same as 4 to
5).
To help understand why and when rule based
approaches failed, we looked at performance
of the models only on notes that rule based
approaches were not able to label EDSS scores
(see appendices). This accounted for around
12% of the notes and we see very poor per-
formance for all other models with F1 scores
below 0.36 (and very high F1-scores for those
rule based were able to label), while MSBC
is still able to achieve an F1 score above 0.6.
This may indicate that a certain portion of
notes that contain poor quality information
and may be “trickier" to label. These “tricky"
notes could be notes that state “no change" or
“similar" results to past notes, without restating
those scores for example. However, it is pre-
dicted that MSBC was still able to outperform
other models through its ability to understand
contextual information embedded in the text.

3.3 Experiment 2: Semi-Supervised
Labelling of EDSS

We evaluated the effectiveness of the Snorkel
ensembles and compared the performance of:
(1) MSBC (which has been observed in Experi-
ment 1), (2) MSBC+, and (3) MSBC-silver.
We hereon refer to two types of labels: (1)
gold labels (n∼16,000), which were manually
obtained by a professional at our MS clinic
and are considered truth in our experiments,
and (2) silver labels (n∼54,000), which were
generated from the model chosen for EDSS
labelling.
Results. Various Snorkel ensembles were eval-
uated as presented in Table 3. Only the LF
combinations that included MSBC were evalu-
ated as MSBC had the best EDSS prediction
performance. From the F1 scores, we observe
that MSBC alone outperforms all ensembles
that contain MSBC by at least 0.02 on Macro-
F1. The addition of weaker classifiers consis-
tently decreased the ensemble’s performance.
Furthermore, we observe that the amount of
conflict for MSBC (i.e. fraction of data MSBC
disagrees with for at least one other LF) in-
creases as weaker classifiers are added to the
ensemble.



Table 2: Sub-score prediction performance differences between baseline and MSBC. Higher values indicate
stronger performance. Highest values are bolded. It should be noted that low to no support for the highest
levels of sub-scores impacted Macro-F1.

Models MSBC RB RB + Word2Vec
Subscore Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Ambulation 0.6980 0.88797 0.2710 0.5627 0.2674 0.5155
Bowel Bladder 0.6039 0.86619 0.2773 0.5525 0.2027 0.5209
Brain Stem 0.5842 0.90356 0.4174 0.5694 0.3712 0.6598
Cerebellar 0.6437 0.85707 0.4927 0.6120 0.4188 0.5908
Mental 0.5496 0.79470 0.3643 0.5586 0.3003 0.5499
Pyramidal 0.7192 0.87755 0.4173 0.5128 0.4028 0.5598
Sensory 0.5570 0.87518 0.4082 0.4173 0.3485 0.5603
Visual 0.7153 0.93855 0.5020 0.4082 0.4207 0.6986

Mean 0.6339 0.8751 0.3937 0.5737 0.3416 0.5820

Table 3: EDSS predictions results for Snorkel ensembles containing MSBC. Conflicts reflect the fraction
of data that MSBC disagrees with at least one other LF. Highest values are bolded.

Ensemble combinations Macro-F1 Micro-F1 Conflicts
MSBC 0.88296 0.94177 N/A
MSBC + Rule Based LFs (RB LFs) 0.86617 0.93363 0.23471
MSBC + RB LFs + Word2Vec 0.78582 0.91901 0.33229
MSBC + RB LFs + Word2Vec + LDA 0.77004 0.88917 0.46796
MSBC + RB LFs + Word2Vec + TFIDFs 0.55728 0.82592 0.55145

From the above analysis, we concluded that
MSBC alone, out of all Snorkel ensembles, per-
forms the best and therefore was chosen to
generate silver-labels for the unlabelled neurol-
ogy notes. Various models were trained using
the MSBC architecture and are presented in
Table 4. The best version of MSBC was the
model trained solely on gold label data (our
original MSBC). Macro-F1 score and Micro-F1
score are observed to drop in MSBC+. MSBC-
silver was the worst out of the 3 variations with
a Macro-F1 of 0.83 and Micro-F1 of 0.91 but is
still observed to outperform the previous best
baseline (RB+Word2Vec CNN presented in Ta-
ble 1) by an approximate Macro and Micro-F1
of 0.06 and 0.02 respectively.

Discussion. MSBC alone performs better
than all Snorkel ensembles. The performance
of the ensembles consistently decreased as more
weak classifiers and heuristics were added. We
hypothesize that the drop in performance is
due to the fact that the Snorkel’s Label Model
learns to predict the accuracy of the LFs based
on observed agreements and disagreements. It

also assumes conditional independence among
the LFs [40]. This result is not surprising given
that the qualitative analysis of errors showed
that MSBC was almost strictly an improve-
ment over the Rule-Based approach. MSBC
only struggled with notes that had EDSS indi-
cated in the roman numeral ‘iv’ (which could
be misconstrued to be the lower-case acronym
for intravenous) and notes where patient com-
plaints of their symptoms were contained in a
different note chunk than the physician find-
ings which contradicted those symptoms. In
all other cases, the model made no significant
(off by no more than 0.5-1 on the EDSS scale)
errors compared to the weak heuristics. There-
fore in the presence of a strong LF, such as
MSBC, we suspect that the addition of weaker
LFs introduce disagreements with MSBC and
thus decreased predictive performance. Fur-
thermore, all LFs were developed based on the
same labelled training data (for example, tf-idf
models were trained on the same training set).
Hence, it is likely that the LFs were correlated,
which violated the conditional independence



Table 4: Performance of MSBC predicting EDSS using different label types. Gold labels (n=16,000) were
manually obtained by a professional at our MS clinic and are considered truth in our experiments. Silver
labels (n=54,000) were generated from MSBC predictions which was trained on gold labels. Higher values
indicate stronger performance. Highest values are bolded.

Model Trained on Macro-F1 Micro-F1

MSBC Gold Labels 0.88296 0.94177
MSBC+ Silver + Gold Labels 0.86238 0.92569
MSBC-silver Silver Labels 0.82922 0.91442

assumption made by Snorkel and compromised
prediction accuracy.
Our model trained on silver labeled data,
MSBC-silver, performs worse than MSBC by
0.03-0.06. This small decrease in performance
indicates that our model is able to relearn its
own distribution and helps validate its perfor-
mance. MSBC-silver outperformed all previous
baselines on the EDSS prediction task. The
strong results of MSBC-silver helps show the
effectiveness of using MSBC as a labelling func-
tion. This work shows potential to reduce te-
dious hours required by a professional to read
through a patient’s consult note and manually
generate an EDSS score.

4 Concluding Thoughts

In this work we present methods to overcome
the challenges that arise when applying a mod-
ern transformer model on a specific clinical
NLP task, specifically MS severity prediction.
We did this through: (1) de-identifying clin-
ical texts in a way that preserves contextual
meaning; (2) generating encounter level embed-
dings to eliminate loss of information result-
ing from the limited context length of trans-
former models; (3) further pretraining a BERT
model on MS consult notes to build a language
model (MS-BERT) with better understanding
of MS clinical notes; (4) developing a classifier
(MSBC) that uses MS-BERT to achieve state
of the art performance on predicting EDSS and
functional subscores; and (5) using our classi-
fier to generate labels for previously unlabelled
data, showing its effectiveness as a labelling
model.
We believe that the MS-BERT language model
and its improved ability to understand MS
consult notes will aid clinicians in the diagnosis
and treatment of MS. Furthermore, we believe
that being trained on more clinical text, MS-

BERT has the potential to improve other NLP
tasks within the clinical domain.

4.1 Future Work
First, we are in the process of implementing
an interpretability module that would provide
per-word attentions instead of the per-sub-
word-token attentions available out-of-the-box.
Second, we want to evaluate MS-BERT’s
performance on other language tasks such
as relation extraction, sentence similarity,
inference tasks, and question answering within
the clinical space. Third, we would like to
experiment with other note-level embeddings
and model architectures, such as the CNN pre-
sented by Kim 2014 [22]. While we are pleased
with the performance of MSBC, we would
like to demonstrate that our approach (the
methods for de-identifying data, fine-tuning a
language model, the generation of encounter
level embeddings and our custom classifier)
can be applied on other clinical datasets. Also,
we would like to pre-train longer context
transformer models such as the Reformer [23]
which targets longer context windows and
compare it to Clinical BERT which is tailored
for the clinical domain [1]. Finally, we would
like to see if using token level embeddings
as inputs to our CNN encoder, along with
replacing some tokens with more clinically
relevant ones in the base BERT vocabulary
could improve encounter level embedding
quality.
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A De-identification of Clinical Text

Table 5: Full breakdown of word and category replacements for note de-identification.

Value Replacement
Last / Family Names Salamanca

Female First Names Lucie

Male First Names Ezekiel

Phone/Fax 1718

MRN/PID 999

Dates / DOB 2010s

Time 1610

Addresses Silesia

Location/Hospital/Clinics Troy

B Functional Subscores for EDSS

Table 6: Functional subscores for EDSS.

Functional Scores Description
Visual Function Ability to read of eye chart at 20 feet

Brainstems Eye movement, balance, hearing, numbness, swallowing, speech

Pyramidal Reflexes, limb strength, motor performance

Cerebellar Muscle coordination and control (ataxia)

Sensory Ability to detect light touch or vibration

Bowl and Bladder Control and correct function of bladder and bowl functions

Cerebral Depression, mental alertness (mentation)

Ambulation Ability to walk unimpaired

C Baseline Models
Term Frequency-Inverse Document Frequency
We trained a number of baseline models on top of our tf-idf features, finding that our max feature
space was optimal at 1500 tokens. After hyper-parameter tuning our tf-idf baseline models, we
observed that the following performed best for predicting EDSS scores:

• Support vector classification (SVC) with tuned regularization parameter ‘C’ equal to 1.
Both linear and radial basis function (RBF) kernels were generated based on their strong
performance in this classification task.

• Linear discriminate analysis (LDA) with a singular value decomposition solver.

• Logistic regression (LR) using a limited-memory BFGS (lbfgs) solver with ‘l2’ regularization
and inverse regularization strength, ‘C’, equal to 100. This model also considered class
weights within the training set.



Word2Vec and Convolution Neural Networks
Word2Vec models [31, 9] take a corpus of text and learn vector representations, called embeddings,
for each word [8]. Words with similar context have been observed to have close embeddings in
the vector space.
CNNs have been observed to work well in a variety of clinical tasks. For example, CNN
architectures have proved successful in relation extraction [41], risk prediction [8], the extraction
of medical events from clinical notes [27], and clinical named entity recognition [44].
Previous work done at our collaborating hospital used a 200-dimensional Word2Vec embedding
trained on all MS consult notes (n=75,009) with a window size of 10 and a minimum count of 2.
Next, they converted all tokenized notes into their word vector representations. While doing so,
they set a maximum note length of 1,000 tokens and zero padded notes as necessary. They then
designed a 3-dimensional input sequence (batch size x 1000 x 200). This input sequence was fed
into a Keras [12] implementation of the CNN architecture described by Kim 2014 [22]. Finally,
using convolutional layers (with max pooling), and fully connected layers (with softmax output),
they trained their CNN model using the RMSProp optimizer with early stopping.

D Detailed Breakdown of MSBC prediction on EDSS

Table 7: Performance of MSBC across all values for EDSS.

MSBC’s Breakdown
EDSS Precision Recall F1 Support

0 0.9764 0.9805 0.9784 717

1.0 0.9605 0.9679 0.9642 779

1.5 0.9751 0.9333 0.9534 420

2.0 0.9365 0.9708 0.9533 926

2.5 0.9410 0.9280 0.9344 361

3.0 0.9413 0.9436 0.9425 408

3.5 0.9362 0.8980 0.9167 196

4.0 0.9632 0.9562 0.9597 137

4.5 0.8605 0.7400 0.7957 50

5.0 0.9157 0.8837 0.8994 86

5.5 0.8889 0.8889 0.8889 81

6.0 0.8689 0.9339 0.9002 227

6.5 0.9247 0.8984 0.9113 246

7.0 0.7761 0.7647 0.7704 68

7.5 0.9286 0.6842 0.7879 38

8.0 0.8889 0.8000 0.8421 30

8.5 0.7500 0.9231 0.8276 13

9.0 0.7143 0.6250 0.6667 8

Mean 0.8970 0.8734 0.8830 4791

Weighted Mean 0.9420 0.9417 0.9414 4791



Figure 3: Heat map showing the distribution of predictions from our model compared to true values.
Tight grouping is noticed in high levels of support, and less grouping where there is less support.

E Performance of MSBC on ’Tricky’ Notes

Table 8: EDSS prediction across notes that were not found via a key word search. Bolded scores represent
best model performance.

EDSS Prediction on Samples that Rules were Unable to Label
Model Macro-F1 Micro-F1 Weighted-F1

MSBC 0.49942 0.61268 0.60340
RB + Word2Vec (Bench Mark) 0.19297 0.33275 0.32934
Word2Vec CNN 0.19297 0.33275 0.32934
SVC RBF 0.26748 0.40493 0.36611
Log Reg Baseline 0.24783 0.35916 0.34876
LDA 0.23374 0.33627 0.32295
Linear SVC 0.18703 0.30634 0.29474

F Exploratory Data Analysis



Table 9: EDSS prediction across notes that were found via a key word search. Bolded scores represent
best model performance.

EDSS Predictions on Samples that Rules were Able to Label
Model Macro-F1 Micro-F1 Weighted-F1

MSBC 0.95363 0.98603 0.98599
RB + Word2Vec CNN (Bench Mark) 0.93298 0.97253 0.97259
Word2Vec CNN 0.79170 0.95525 0.95393
LDA 0.53302 0.79872 0.80062
Linear SVC 0.52528 0.80346 0.80861
SVC RBF 0.48367 0.76723 0.75366
Log Reg Baseline 0.48057 0.75918 0.75845

Figure 4: Distribution of age within the data set.

Figure 5: Histogram showing the number of notes per patient.



Figure 6: Plot of mean EDSS score vs age.

Figure 7: Change of EDSS score in subsequent visits.



Figure 8: Change of functional subscores with age.

Figure 9: Distribution of functional subscores across gender.



Figure 10: Correlation matrix between functional subscores and EDSS. Strong correlations between EDSS
and ambulatory and pyramidal subscores as expected.


