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Abstract

Decision trees are ubiquitous in machine learning
for their ease of use and interpretability. Yet, these
models are not typically employed in reinforce-
ment learning as they cannot be updated online
via stochastic gradient descent. We overcome
this limitation by allowing for a gradient update
over the entire tree that improves sample complex-
ity affords interpretable policy extraction. First,
we include theoretical motivation on the need for
policy-gradient learning by examining the prop-
erties of gradient descent over differentiable de-
cision trees. Second, we demonstrate that our
approach equals or outperforms a neural network
on all domains and can learn discrete decision
trees online with average rewards up to 7x higher
than a batch-trained decision tree. Third, we con-
duct a user study to quantify the interpretability
of a decision tree, rule list, and a neural network
with statistically significant results (p < 0.001).

1 Introduction and Related Work

Reinforcement learning (RL) with neural network function
approximators, known as “Deep RL,” has achieved tremen-
dous results in recent years [Andrychowicz et al., 2018,
2016, Arulkumaran et al., 2017, Espeholt et al., 2018, Mnih
et al., 2013, Sun et al., 2018, Rajeswaran et al., 2017]. Deep
RL uses multi-layered neural networks to represent poli-
cies trained to maximize an agent’s expected future reward.
Unfortunately, these neural-network-based approaches are
largely uninterpretable due to the millions of parameters
involved and nonlinear activations throughout.
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In safety-critical domains, e.g., healthcare and aviation, in-
sight into a machine’s decision-making process is of ut-
most importance. Human operators must be able to follow
step-by-step procedures [Clay-Williams and Colligan, 2015,
Gawande, 2010, Haynes, 2009]. Of the machine learning
(ML) methods able to generate such procedures, decision
trees are among the most highly developed [Weiss and In-
durkhya, 1995], persisting in use today [Gombolay et al.,
2018a, Zhang et al., 2019]. While interpretable ML methods
offer much promise [Letham et al., 2015], they are unable
to match the performance of Deep RL [Finney, 2002, Sil-
ver, 2016]. In this paper, we advance the state of the art in
decision tree methods for RL and leverage their ability to
yield interpretable policies.

Decision trees are viewed as the de facto technique for inter-
pretable and transparent ML [Rudin, 2014, Lipton, 2018], as
they learn compact representations of relationships within
data [Breiman et al., 1984]. Rule [Angelino et al., 2017,
Chen and Rudin, 2017] and decision lists [Lakkaraju and
Rudin, 2017, Letham et al., 2015] are related architectures
also used to communicate a decision-making process. Deci-
sion trees have been also applied to RL problems where they
served as function approximators, representing which action
to take in which state [Ernst and Wehenkel, 2005, Finney,
2002, Pyeatt and Howe, 2001, Shah and Gopal, 2010].

The challenge for decision trees as function approximators
lies in the online nature of the RL problem. The model
must adapt to the non-stationary distribution of the data as
the model interacts with its environment. The two primary
techniques for learning through function approximation, Q-
learning [Watkins, 1989] and policy gradient [Sutton and
Mansour, 2000], rely on online training and stochastic gra-
dient descent [Bottou, 2010, Fletcher and Powell, 1963].
Standard decision trees are not amenable to gradient descent
as they are a collection of non-differentiable, nested, if-then
rules. As such, researchers have used non-gradient-descent-
based methods for training decision trees for RL [Ernst and
Wehenkel, 2005, Finney, 2002, Pyeatt and Howe, 2001], e.g.,
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greedy state aggregation, rather than seeking to update the
entire model with respect to a global loss function [Pyeatt
and Howe, 2001]. Researchers have also attempted to use
decision trees for RL by training in batch mode, completely
re-learning the tree from scratch to account for the non-
stationarity introduced by an improving policy [Ernst and
Wehenkel, 2005]. This approach is inefficient when scaling
to realistic situations and is not guaranteed to converge. De-
spite these attempts, success comparable to that of modern
deep learning approaches has been elusive [Finney, 2002].

In this paper, we present an novel function approximation
technique for RL via differentiable decision trees (DDTs).
We provide three contributions. First, we examine the prop-
erties of gradient descent over DDTs, motivating policy-
gradient-based learning. To our knowledge, this is the first
investigation of the optimization surfaces of Q-learning and
policy gradients for DDTs. Second, we compare our method
with baseline approaches on standard RL challenges, show-
ing that our approach parities or outperforms a neural net-
work; further, the interpretable decision trees we discretize
after training achieve an average reward up to 7x higher
than a batch-learned decision tree. Finally, we conduct a
user study to compare the interpretability and usability of
each method as a decision-making aid for humans, show-
ing that discrete trees and decision lists are perceived as
more helpful (p < 0.001) and are objectively more efficient
(p < 0.001) than a neural network.

Remark 1 (Analysis Significance) Our approach builds
upon decades of work in machine and RL; yet ours is the first
to consider DDTs for online learning. While researchers
have shown failings of Q-learning with function approxi-
mation, including for sigmoids [Baird, 1995, Bertsekas and
Tsitsiklis, 1996, Gordon, 1995, Tsitsiklis and Van Roy, 1996],
we are unaware of analysis of Q-learning and policy gradi-
ent for our unique architecture. Our analysis provides in-
sight regarding the best practices for training interpretable
RL policies with DDTs.

2 Preliminaries

In this section, we review decision trees, DDTs, and RL.

2.1 Decision Trees

A decision tree is a directed, acyclic graph, with nodes and
edges, that takes as input an example, x, performs a forward
recursion, and returns a label ŷ ( Equations 1-3).

ŷ(x) := Tηo(x) (1)

Tη(x) :=

{
yη, if leaf
µη(x)Tη↙(x) + (1− µη(x))Tη↘(x) o/w

(2)

µη(x) :=

{
1, if xjη > φη
0, o/w

(3)

There are two node types: decision and leaf nodes, which
have an outdegree of two and zero, respectively. Nodes have
an indegree of one except for the root, ηo, whose indegree
is zero. Decision nodes η are represented as Boolean ex-
pressions, µη (Eq. 3), where xjη and φη are the selected
feature and splitting threshold for decision node η. For each
decision node, the left outgoing edge is labeled “true,” and
the right outgoing edge is labeled “false.” E.g., if µη is eval-
uated true, the left child node, η↙, is considered next. The
process repeats until a leaf is reached upon which the tree
returns the corresponding label. The goal is to determine the
best j∗η , φ∗η , and yη for each node and the best structure (i.e.,
whether, for each η, there exists a child). There are many
heuristic techniques for learning decision trees with a batch
data [Breiman et al., 1984]. However, one cannot apply
gradient updates as the tree is fixed at generation. While
some have sought to grow trees for RL [Pyeatt and Howe,
2001], these approaches do not update the entire tree.

DDTs – Suárez and Lutsko provide one of the first DDT
models. Their method replaces the Boolean decision in
Eq. 3 with the sigmoid activation function shown in Eq. 4.
This function considers a linear combination of features x
weighted by βη compared to a bias value φη , and augmented
by a steepness parameter aη . The tree is trained via gradient
descent for, φη, βη, and aη across nodes η [Suárez and
Lutsko, 1999]. This method has been applied to offline,
supervised learning but not RL.

µη(x) :=
1

1 + e−(aη(β>η x−φη))
(4)

2.2 Reinforcement Learning

RL is a subset of machine learning in which an agent is
tasked with learning the optimal action sequence that max-
imizes future expected reward [Sutton and Barto, 1998].
The problem is abstracted as a Markov Decision Process
(MDP), which is a five-tuple 〈S,A, P, γ,R〉 defined as
follows: S is the set of states; A is the set of actions;
P : S ×A× S → [0, 1] is the transition matrix describing
the probability that taking action a ∈ A in state s ∈ S
results in state s′ ∈ S; γ ∈ [0, 1] is the discount factor
defining the trade-off between immediate and future reward;
and R : S ×A→ R is the function dictating the reward an
agent receives by taking action a ∈ A in state s ∈ S. The
goal is to learn a policy, π : S → A, that prescribes which
action to take in each state to maximize the agent’s long-
term expected reward. There are two ubiquitous approaches
to learn a policy: Q-learning and policy gradient.

Q-learning seeks to to learn a mapping, Qπ : S ×A→ R,
that returns the expected future reward when taking action
a in state s. This mapping (i.e., the Q-function) is typically
approximated by a parameterization θ (e.g., a neural net-
work), Qθ. One then minimizes the Bellman residual via
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Figure 1: Figure 1a depicts the cart pole analogy for our analysis. Figure 1b depicts the MDP model for our analysis. Figure
1c depicts a tree representation of the optimal policy for our analysis, with optimal actions circled.

Eq. 5, where Q∆θ is the estimated change in θ, and st+1 is
the state the agent arrives in after applying action at in state
st at time step t with learning rate α.

Q∆θ := α

(
R(st, at) + γmax

a′∈A
Qθ(st+1, a

′)

−Qθ(st, at)
)
∇θQπθ (st, at) (5)

A complementary approach is the set of policy gradient
methods in which one seeks to directly learn a policy, πθ(s),
parameterized by θ, that maps states to actions. The update
rule maximizes the expected reward of a policy, as shown
in Equation 6, where PG∆θ indicates the change in θ for a
timestep under policy gradient and At =

∑T
t′=t γ

(T−t′)rt′ .
T is the length of the trajectory.

PG∆θ := α
∑
t

At∇θ log (πθ (st, at)) (6)

We provide an investigation into the behavior of Q∆θ and
PG∆θ as for DDTs in Section 5.

3 DDTs as Interpretable Function
Approximators

In this section, we derive the Q-learning and policy gradient
updates for DDTs as function approximators in RL. Due to
space considerations, we show the simple case of a DDT
with a single decision node and two leaves with one feature
s with feature coefficient β, as shown in Eq. 7 with the
gradient shown in Equations 8-12.

fT (s, a) = µ(s)ŷTRUE
a + (1− µ(s)) ŷFALSE

a (7)

∇fT (s, a) =

[
∂fT

∂ŷTRUEa

,
∂fT

∂ŷFALSEa

,
∂fT
∂α

,
∂fT
∂β

,
∂fT
∂φ

]ᵀ
(8)

∂fT
∂ŷTRUEa

= 1− ∂fT
∂ŷFALSEa

= µ(s) (9)

∂fT
∂α

= (q̂TRUEa − q̂FALSEa )µ(s)(1− µ(s))(βs− φ) (10)

∂fT
∂β

= (q̂TRUEa − q̂FALSEa )µ(s)(1− µ(s))(a)(s) (11)

∂fT
∂φ

= (q̂TRUEa − q̂FALSEa )µ(s)(1− µ(s))(a)(−1) (12)

When utilizing a DDT as a function approximator for Q-
learning, each leaf node returns an estimate of the expected
future reward (i.e., the Q-value) for applying each action
when in the portion of the state space dictated by the crite-
rion of it’s parent node (Eq. 13).

fT (s, a)→ Q(s, a) = µ(s)q̂TRUE
a + (1− µ(s)) q̂FALSE

a (13)

Likewise, when leveraging policy gradient methods for RL
with DDT function approximation, the leaves represent an
estimate of the optimal probability distribution over actions
the RL agent should take to maximize its future expected
reward. Therefore, the values at these leaves represent the
probability of selecting the corresponding action (Eq. 14).
We impose the constraint that the probabilities of all actions
sum to one (ŷTRUEa1 + ŷTRUEa2 = 1).

fT (s, a)→ π(s, a) = µ(s)π̂TRUE
a + (1− µ(s)) π̂FALSE

a (14)

4 Interpretability for Online Learning

We seek to address the two key drawbacks of the original
DDT formulation by Suárez and Lutsko [Suárez and Lutsko,
1999] in making the tree interpretable. First, the operation
β>η x at each node produces a linear combination of the
features, rather than a single feature comparison. Second,
use of the sigmoid activation fuction means that there is a
smooth transition between the TRUE and FALSE evalu-
ations of a node, rather than a discrete decision. We address
these limitations below; we demonstrate the extensibility
of our approach by also differentiating over a rule list ar-
chitecture [Letham et al., 2015] and extracting interpretable
rule lists. Using the mechanisms from Sections 4.1 and 4.2,
we produce interpretable policies for empirical evaluation
(Section 6) and a user study (Section 7).
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Figure 2: Figures 2a and 2c depict the Q-learning and policy gradient update curves, respectively. Figures 2b and 2d depict
the policy value, V π (Figure 2b), and the integrated gradient updates (Figure 2d) for Q-learning (blue) and policy gradient
(red) for the MDP depicted in Figure 1b.

4.1 Discretizing the Differentiable Decision Tree

Due to the nature of the sigmoid function, even a sparse βη
is not sufficient to guarantee a discrete decision at each
node. Thus, to obtain a truly discrete tree, we convert
the differentiable tree into a discrete tree by employing
an arg maxj(β

j
η) to obtain the index of the feature of j that

the node will use. We set βη to a one-hot vector, with a
1 at index j and 0 elsewhere. We also divide φη by the
node’s weight βjη, normalizing the value for comparison
against the raw input feature xj . Each node then compares
a single raw input feature to a single φη, effectively con-
verting from Eq. 4 back into Eq. 3. We repeat this process
for each decision node, obtaining discrete splits throughout
the tree. Finally, each leaf node must now return a single
action, as in an ordinary decision tree. We again employ
an arg maxj(β

j
η) on each leaf node and set the leaves to be

one-hot vectors with βjη = 1 and all other values set to 0.
The result of this process is an interpretable decision tree
with discrete decision nodes, a single feature comparison
per node, and a single decision output per leaf.

4.2 Differentiable Rule Lists

In addition to discretizing the optimized tree parameteri-
zation, we also consider a specific sub-formulation of tree
proposed by [Letham et al., 2015] to be particularly inter-
pretable: the rule- or decision-list. This type of tree restricts
the symmetric branching allowed for in Eq. 1 by stating that
the TRUE branch from a decision node leads directly to a
leaf node. We define a discrete rule list according to Eq. 15.

Tη(x) :=

{
yη, if leaf
µη(x)yη↙ + (1− µη(x))Tη↘(x) o/w

(15)

In Section 6, we demonstrate that these mechanisms for
interpretability achieves high-quality policies for online RL
and are consistent with the the legal [Voigt and Von dem
Bussche, 2017] and practical criteria for interpretability
[Doshi-Velez and Kim, 2017, Letham et al., 2015].

5 Analysis of Gradient Methods for DDTs

In this section, we analyze Q-learning and policy gradient
updates for DDTs as function approximators in RL, pro-
viding a theoretical basis for how to best deploy DDTs to
RL. We show that Q-learning introduces additional criti-
cal points that impede learning where policy gradient does
not. This analysis guides us to recommend policy gradient
for these interpretable function approximators and yields
high-quality policies (Section 6).

5.1 Analysis: Problem Setup

We consider an MDP with states S = {s1, s2, ..., sn} and
actions A = {a1, a2} (Figure 1b). The agent moves to a
state with a higher index (i.e., s = s+1) when taking action
a1 with probability p and 1− p for transitioning to a lower
index. The opposite is the case for action a2. Within Figure
1b, a1 corresponds to “move right” and a2 corresponds to
“move left.” The terminal states are s1 and sn. The rewards
are zero for each state except for R(si∗) = R(si∗+1) = +1
for some i∗ such that 1 < i∗ < n − 1. It follows that
the optimal policy, π∗, is π(s) = a1 (“move right”) in
sj such that 1 ≤ j ≤ i∗ and π(s) = a2 otherwise. A
proof is given in supplementary material. We optimistically
assume p = 1; despite this hopeful assumption, we show
unfavorable results for Q-learning and policy-gradient-based
agents using DDTs as function approximators.
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Figure 3: Training curves for the cart pole domain (left), and the resulting discrete decision tree (right)

5.2 Analysis: Tree Initialization

For our investigation, we assume that the decision tree’s
parameters are initialized to the optimal setting. Given our
MDP setup, we only have one state feature: the state’s
index. As such, we only have two degrees of freedom
in the decision node: the steepness parameter, α, and the
splitting criterion, φ. In our analysis, we focus on this
splitting criterion, φ, showing that even for an optimal tree
initialization, φ is not compelled to converge to the optimal
setting φ = i∗ + 1

2 . We set the leaf nodes as follows for
Q-learning and policy gradient given the optimal policy.

For Q-learning, we set the discounted optimal action re-
ward as q̂TRUEa2 = q̂FALSEa1 =

∑∞
t=0 γ

tr+ = r+

1−γ , which
assumes so = si∗ . Likewise, we set ŷTRUEa1 = ŷFALSEa2 =
r+

1−γ − r+ − r+γ, which correspond to the Q-values of
taking action a1 and a2 in states s2 and s3 when otherwise
following the optimal policy starting in a non-terminal node.

For policy gradient, we set ŷTRUEa2 = ŷFALSEa1 = 0.99 and
ŷTRUEa1 = ŷFALSEa2 = 0.01. These settings correspond to a
decision tree that focuses on exploiting the current (opti-
mal if φ = i∗) policy. While we consider this setting of
parameters for our analysis of DDTs, the results generalize.

5.3 Computing Critical Points

The ultimate step in our analysis is to assess whether Q-
learning or policy gradient introduces critical points that
do not coincide with global extrema. To do so, we can set
Equations 5 and 6 to zero, with∇Q(s, a) = ∇fT s, a from
Eq. 13 and∇π(s, a) = ∇fT (s, a) from Eq. 14, respectively.
We would then solve for our parameter(s) of interest and
determine whether any zeros lie at local extrema. In our
case, focusing on the splitting criterion, φ, is sufficient to
show the weaknesses of Q-learning for DDTs.

Rather than exactly solving for the zeros, we use numerical
approximation for these Monte Carlo updates (Equations 5
and 6). In this setting, we recall that the agent experiences
episodes with T timesteps. Each step generates its own
update, which are combined to give the overall update ∆φ =∑T
t=0 ∆φ(t). Pseudo-critical points exist, then, whenever

∆φ = 0. A gradient descent algorithm would treat these
as extrema, and the gradient update would push φ towards

these points. As such, we consider these “critical points.”

5.4 Numerical Analysis of the Updates

The critical points given by ∆φ = 0 are shown in Figures
2a and 2c for Q-learning and PG, respectively. For the
purpose of illustration, we set n = 4 (i.e., the MDP has
four states). As such, i∗ = 2 and the optimal setting for
φ = φ∗ = i∗ + 1

2 = 2.5.

For Q-learning, there are five critical points, only one of
which is coincident with φ = φ∗ = i∗ + 1

2 . For PG, there
are fewer, with a single critical point in the domain of φ ∈
(−∞,∞), which occurs at φ ≈ 2.4651. Thus, we can
say that the expectation of the critical point for a random,
symmetric initialization is Eso∼U(2,3)[∆φ = 0|so] = i∗ +
1
2 , which supports the adoption of policy gradient as an
approach for DDTs.

Additionally, by integrating ∆φ with respect to φ from 0 to
φ, i.e., Optimality(φ) =

∫ φ
φ′=0

∆φ′dφ′, we infer the “opti-
mality curve,” which should equal the value of the policy,
V πφ , implied by Q-learning and policy gradient. We nu-
merically integrate using Riemann’s method normalized to
[0, 1]. One would expect that the respective curves for the
policy value (Figure 2b) and integrated gradient updates
(Figure 2d) would be identical; however, this does not hold
for Q-learning. Q-learning with DDT function approxima-
tion introduces undesired extrema, shown by the blue curve
in Figure 2d. Policy gradient, on the other hand, maintains
a single maximum coincident with φ = φ∗ = i∗ + 1

2 = 2.5.

This analysis provides evidence that Q-learning exhibits
weaknesses when applied to DDT models, such as an excess
of critical points which serve to impede gradient descent.
We therefore conclude that policy gradient is a more promis-
ing approach for learning the parameters of DDTs and pro-
ceed accordingly. As such, we have shown that Q-learning
with DDT function approximators introduces additional ex-
trema that policy gradients, under the same conditions, do
not, within our MDP case study.

This analysis provides the first examination of the potential
pitfalls and failings of Q-learning with DDTs. We believe

1We recall that, for this analysis, so = i∗; if we set so = i∗+1
(i.e., the symmetric position with respect to vertical), this critical
point for policy gradient is φ = 2.535.
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Figure 4: Training curves for the lunar lander domain (left), and the resulting discrete rule list (right)

that this helpful analysis will guide researchers in the appli-
cation of these function approximators. Given this analysis
and our mechanisms for interpretability (Section 4), we now
show convincing empirical results (Section 6) of the power
of these function approximators to achieve high-quality and
interpretable policies in RL.

6 Demonstration of DDTs for Online RL

Our ultimate goal is to show that DDTs can learn competent,
interpretable policies online for RL tasks. To demonstrate
this, we evaluate our DDT algorithm using the cart pole
and lunar lander OpenAI Gym environments [Brockman
et al., 2016], a simulated wildfire tracking problem, and the
FindAndDefeatZerglings mini-game from the StarCraft II
Learning Environment [Vinyals et al., 2017]. All agents are
trained via Proximal Policy Optimization (PPO) [Kostrikov,
2018, Schulman et al., 2017]. We use a multilayer percep-
tron (MLP) architecture as a baseline for performance across
all tasks. We provide further details on the evaluation do-
mains below, as well as examples of extracted interpretable
policies, trained using online RL with DDTs. Due to space
constraints, we present pruned versions of the interpretable
policies in which redundant nodes are removed for visual
clarity. The full policies are in the supplementary material.

We conduct a sensitivity analysis comparing the perfor-
mance of MLPs with DDTs (DDTs) across a range of depths.
For the trees, the set of leaf nodes we consider is {2, 4, 8, 16,
32}. For comparison, we run MLP agents with between {0,
1, 2, 4, 8, 16, 32} hidden layers, and a rule-list architecture
with {1, 2, 4, 8, 16, 32} rules. Results from this sensitivity
analysis are given in Figures 4 & 5 in the supplementary
material. We find that MLPs succeed only with a narrow
subset of architectures, while DDTs and rule lists are more
robust. In this section, we present results from the agents
that obtained the highest average cumulative reward in our
sensitivity analysis. Table 1 compares mean reward of the
highest-achieving agents and shows the mean reward for
our discretization approach applied to the best agents. For
completeness, we also compare against standard decision
trees which are fit using scikit-learn [Pedregosa, 2011] on
a set of state-action pairs generated by the best-performing
model in each domain, which we call State-Action DT.

In our OpenAI Gym [Brockman et al., 2016] environments

we use a learning rate of 1e-2, and in our wildfire tracking
and FindAndDefeatZerglings [Vinyals et al., 2017] domains
we use a learning rate of 1e-3. All models are updated with
the RMSProp [Tieleman and Hinton, 2012] optimizer. All
hyperparameters are included in the supplementary material.

6.1 Open AI Gym Evaluation

We plot the performance of the best agent for each archi-
tecture in our OpenAI Gym [Brockman et al., 2016] experi-
ments, as well as pruned interpretable policies, in Figures
3 and 4. To show the variance of the policies, we run five
seeds for each policy-environment combination. Given the
flexibility of MLPs and their large number of parameters,
we anticipate an advantage in raw performance. We find that
the DDT offers competitive or even superior performance
compared to the MLP baseline, and even after converting
the trained DDT into a discretized, interpretable tree, the
training process yields tree policies that are competitive with
the best MLP. Our interpretable approach yields a 3x and
7x improvement over a batch-trained decision tree (DT) on
lunar lander and cart pole, respectively. Table 1 depicts the
average reward across domains and agents.

6.2 Wildfire Tracking

Wildfire tracking is a real-world problem in which inter-
pretability is critical to an agent’s human teammates. While
RL is a promising approach to develop assistive agents in
wildfire monitoring [Haksar and Schwager, 2018], it is im-
portant to maintain trust between these agents and humans
in this dangerous domain. An agent that can explicitly give
its policy to a human firefighter is therefore highly desirable.

We develop a Python implementation of the simplified FAR-
SITE [Finney, 1998] wildfire propagation model. The en-
vironment is a 500x500 map in which two fires propagate
slowly from the southeast end of the map to the northwest
end of the map and two drones are randomly instantiated
in the map. Each drone receives a 6D state containing dis-
tances to each fire centroid and Boolean flags indicating
which fire the drone is closer to. The RL agent is duplicated
at the start of each episode and applied to each drone, and
the drones do not have any way of communicating. The
challenge is to identify which fire is closest to the drone,
and to then take action to get as close as possible to that
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Figure 5: Training curves for the wildfire tracking environment (left) and the resulting discrete decision tree (right)

Table 1: Average cumulative reward for top models across methods and domains. Bold denotes highest-performing method.

Agent Type Cart Pole Lunar Lander Wildfire Tracking FindAndDefeatZerglings
DDT Balanced Tree (ours) 500 ± 0 97.9 ± 10.5 -32.0 ± 3.8 6.6 ± 1.1
DDT Rule List (ours) 500 ± 0 84.5 ± 13.6 -32.3 ± 4.8 11.3 ± 1.4
MLP 500 ± 0 87.7 ± 21.3 -86.7 ± 9.0 6.6 ± 1.2
Discretized DDT (ours) 499.5 ± 0.8 -88 ± 20.4 -36.4 ± 2.6 4.2 ± 1.6
Discretized Rule List (ours) 414.4 ± 63.9 -78.4 ± 32.2 -39.8 ± 1.8 0.7 ± 1.3
State-Action DT 66.3 ± 18.5 -280.9 ± 60.6 -67.9 ± 7.9 -3.0 ± 0.0

fire centroid, with the objective of flying above the fires
as they progress across the map. Available actions include
four move commands (north, east, south, west) and a “do
nothing” command. The reward function is the negative
distance from drones to fires, given in Eq. 16 where D is a
distance function, di are the drones, and fi are the fires.

R = −min [(D(d1, f1), D(d2, f1))]

−min [D(d1, f2), D(d2, f2)] (16)

The reward over time for the top performing DDT and MLP
agents is given in Figure 5, showing the DDT significantly
outperforms the MLP. We also present the interpretable
policy for the best DDT agent, which has the agent neglect
the south and east actions, instead checking for north and
west distances and moving in those directions. This behavior
reflects the dynamics of the domain, in which the fire always
spreads from southeast to northwest. The best interpretable
policy we learn is ≈2x better than the best batch-learned
tree and >2x better than the best MLP.

6.3 StarCraft II Micro-battle Evaluation

To further evaluate the DDT and discretized tree, we use
the FindAndDefeatZerglings minigame from the StarCraft
II Learning Environment [Vinyals et al., 2017]. For this
challenge, three allied units explore a partially observable
map and defeat as many enemy units as possible within
three minutes. We assign each allied unit a copy of the same
learning agent. Rather than considering the image input
and keyboard and mouse output, we manufacture a reduced
state-action space. The input state is a 37D vector of allied
and visible enemy state information, and the action space
is 10D consisting of move and attack commands. More
information is in supplementary material.

As we can see in Figure 6, our DDT agent is again com-
petitive with the MLP agent and is >2x better than a batch-
learned decision tree. The interpretable policy for the best
DDT agent reveals that the agent frequently chooses to at-
tack, and never moves in conflicting directions. This behav-
ior is intuitive, as the three allied units should stay grouped
to increase their chances of survival. The agent has learned
not to send units in conflicting directions, instead moving
units southwest while attacking enemies en route.

7 Interpretability Study
To emphasize the interpretability afforded by our approach,
we conducted a user study in which participants were pre-
sented with policies trained in the cart pole domain and
tasked with identifying which decisions the policies would
have made given a set of state inputs. We compared inter-
pretability between a discrete decision tree, a decision list,
and a one-hot MLP without activation functions.

7.1 Study Setup

We designed an online questionnaire to survey 15 partici-
pants, giving each a discretized DDT, a discretized decision
list, and a sample one-hot MLP. The discretized policies are
actual policies from our experiments, presented in Table 1.
Rather than include the full MLP, which is available in the
supplementary material, we binarized the weights, thereby
make the calculation much easier and less frustrating for par-
ticipants. This mechanism is similar to current approaches
to interpretability with deep networks that use attention [Ser-
rano and Smith, 2019] so that human operators can see what
the agent is considering when it makes a decision.

After being given a policy, participants were presented with
five sample domain states. They were then asked to trace the
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Figure 6: Training curves for the FindAndDefeatZerglings environment (left) and the resulting discrete decision tree (right)

policy with a given input state and predict what the agent
would have done. After predicting which decisions the agent
would have made, participants were presented with a set of
Likert scales assessing their feelings on the interpretability
and usability of the given policy as a decision-making aid.
We timed participants for each method.

We hypothesize that: H1: A decision-based classifier is
more interpretable than an MLP; H2: A decision-based
classifier is more efficient than a MLP. To test these hypothe-
ses, we report on participant Likert scale ratings (H1) and
completion time for each task (H2).

7.2 Study Results

Results of our study are shown in Figure 7. We perform an
ANOVA and find that the type of decision-making aid had a
statistically significant effect on users’ Likert scale ratings
for usability and interpretability (F (2, 28) = 19.12, p <
0.0001). We test for normality and homoscedasticity and do
not reject the null hypothesis in either case, using Shapiro-
Wilk (p > 0.20) and Levene’s Test (p > 0.40), respectively.
A Tukey’s HSD post-hoc test shows that the tree (t = 6.02,
p < 0.0001) and decision list (t = 4.24, p < 0.0001) both
rated significantly higher than a one-hot MLP.

We also test the time participants took to use each decision-
making aid for a set of five prompts. We applied Friedman’s
test and found the type of aid had a significant effect on
completion time (Q(2) = 26, p < 0.0001). Dunn’s test
showed that the tree (z = −4.07, p < 0.0001) and decision

Figure 7: Results from our user study. Higher Likert ratings
are better, lower time taken is better.

list (z = −5.23, p < 0.0001) times were statistically signif-
icantly shorter than the one-hot MLP completion times.

We note that participants were shown the full MLP after the
questionnaire’s conclusion, and participants consistently re-
ported they would have abandoned the task if they had been
presented with a full MLP as their aid. These results support
the hypothesis that decision trees and lists are significantly
superior decision-making aids in reducing human frustra-
tion and increasing efficiency. This study, coupled with our
strong performance results over MLPs, shows the power of
our approach to interpretable, online RL via DDTs.

8 Future Work
We propose investigating how our framework could lever-
age advances in other areas of deep learning, e.g. inferring
feature embeddings. For example, we could learn subject-
specific embeddings via backpropagation but within an in-
terpretable framework for personalized medicine [Killian
et al., 2017] or in apprenticeship learning [Gombolay et al.,
2018b], particularly when heterogeneity precludes a one-
size-fits-all model [Chen et al., 2020]. We could also invert
our learning process to a prior specify a decision tree pol-
icy given expert knowledge, which we could then train via
policy gradient [Silva and Gombolay, 2019].

9 Conclusion
We demonstrate that DDTs can be used in RL to generate
interpretable policies. We provide a motivating analysis
showing the benefit of using policy gradients to train DDTs
in RL challenges over Q-learning. This analysis serves to
guide researchers and practitioners alike in future research
and application of DDTs to learn interpretable RL policies.
We show that DDTs trained with policy gradient can pro-
vide comparable and even superior performance against
MLP baselines. Finally, we conduct a user study which
demonstrates that DDTs and decision lists offer increased
interpretability and usability over MLPs while also taking
less time and providing efficient insight into policy behavior.
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