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Motivation

 What if we need to solve a family of related tasks?

* Picking up objects with different masses/sizes.
 Driving different vehicles.
* Treating patients with different physiologies.

o We'll focus on the situation in which the rewards don’t
change but the dynamics change.

» Goal: Still reach near-optimal performance, quickly.



Markov Decision Process
(S,A,T,R,y)>n

» S: state space; A: action space
e T(s'|s,a) Is the transition model
* R(s,a) Is the reward model; 1t(s) Is the policy

Q T(s'|s,a) a T'(s'|s,a)



Markov Decision Process
(S,A,T,R,y)>n

» S: state space; A: action space
e T(s'|s,a) Is the transition model
* R(s,a) Is the reward model; 1t(s) Is the policy

Relationship determines transfer possibilities




HIP-MDPs: Defining related tasks

(S,A,Ty,R,y,P,)

e S, A, R as before
* T(s'|s,a,0) is parameterized by 6
 Pgis the distribution over all possible 6




HIP-MDP Approach

 Parameter 0 is fixed per task
« Each MDP Mg is an MDP

* Knowing O is sufficient for solving the task

Idea: O is a minimal statistic to characterize the
MDP; try to minimize uncertainty in 6 and then
solve the MDP



Does It work?



Kinda... Toy Example
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Kinda... Toy Example
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An accurate T(s’|s,a,0) Is hardto learn;
we end up updating the form
of the transition function to do the task.
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Our approach: Direct Policy Transfer

 Assume a batch of available data, with near-optimal
policies. (Common in many real scenarios where we
have observational data.)

» Use the batch to learn the functional form of T(s'|s,a,0)
and Pg ; solve for each 8. Learn a form for the policy

m(als,0).

* Glven interactions from a new instance, quickly
identify O; then follow the policy 1t(als,0).



Our approach: Direct Policy Transfer

 Assume a batch of available data, with near-optimal
policies. (Common in many real scenarios where we
have observational data.)

» Use the batch to learn the functional form of T(s'|s,a,0)
and Pg ; solve for each 8. Learn a form for the policy

m(als,0).

* Glven interactions from a new instance, quickly
identify O; then follow the policy 1t(als,0).

Hypothesis: 8 may not be sufficient for planning
but may be sufficient to key a near-optimal policy.




Toy Example, One Episode
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Toy Example, One Episode
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Note: Even if the policy has similar performance,
much faster at test time! Only requires solving for 0!
(In our experiments, at least 10x faster.)




HIV Simulator

* Take the HIV simulator from Adams et al
(2004), used Iin Earnst et al. (2005) — only two
drugs, six measured variables.

* Each patient now has a different dynamical
system model.

* Goal: given several patients, quickly learn a
model for a new patient.



HIV Simulator
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Summary

» Working toward faster adaptation to new but
similar dynamics.

* Currently: Use the dynamics to create a statistic
of the problem; use the statistic to key a policy.

* Future work: Reducing constraints on the
observational data (optimal policies available),
more robust learning.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

