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Introduction Results
Problem Many applications involve learning from a series of tasks with similar dynamics. 4000 | | | | 50
Prior Work The recently-introduced HiP-MDP addresses such situations by characterizing — ELFT’"‘DF'
the variation in these dynamics with a few hidden parameters. w 000 pca B
Limitation The approach is computationally inefficient since it still needs to train a DDQN. = 5000l 5
And it requires the estimated transition dynamics to be fairly accurate. g g
Our work We use these model-based parameters for direct policy transfer. Given a batch E 1000y =
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of training tasks, we demonstrate that this direct policy approach requires significantly less S 0 5 ~100p — E:‘T’"‘DF'
samples and computation to learn a policy for a new task. — PcA
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(a) A comparison of epsilon greedy poli-  (b) A comparison of cumulative rewards of mul-
cies Tppon, THipMDP, Tppr (€ = 0.15)  tiple runs following the three policies Figure 2: Cumulative rewards achieved throughout the initial episode of a newly encountered
instance. The PCA baseline also uses a latent-representation to parametrize the policy, learned
Figure 1: Demonstration through a dimensionality reduction of the transition statistics. Denote the transition statistics

of observed instances as ® . Decompose @ = UpSe Vg . Then wy = ¢p - Vg

COMPUTATION TIME CUMULATIVE REWARDS
- ‘/)p{*?#”} 2D Nav ACROBOT HIV 2D Nav ACROBOT HIV
Observations »  BNN PCA 17.4s+0.52 56.3s+1.49 180.6s+4.43 317.94207.8 -42.7+38.89 100.8+12.8 207.8+1.53
f| @ =il"a%sm) HiIPMDP 1.0 x 10%s 1.9 x 10%s 1.0 x 10%*s 809.9+35 -30.8433.2  726.74+59.8 580.0+21.9
N \, DPT 1.1 x10’s 1.2 x10°s 1.2 x 107s 891.9+319  -27.7+49.5 1425.0+5.6  562.24+4.2
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\‘ 2 = (b)) Table 1: Experimental results where DPT is evaluated against HiP-MDP and PCA baseline
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8 T Hase . N 5 e The latent variable is sufficient to capture differences in the dynamics of an environment
1. Collect initial observations D = {D,})_, 1. Initialize w, = Efwy] i b gt 13 liev diret]
2. Estimate the transition function and la- 2. Generate transitions D, with m(s,wp;)) A call be used 1o p.arame Hae p(? 1ey CTELLY . o
tent variables by iterativiely updating 3. Update w, with D, by minimizing a- e The DPT approach is computationally-efficient and generates better policies than
pOW|s™, a™, 8™, wy) ~ I;q(w;) and wMLE divergence of (W) and p(W|s™,a™, s ™, wp) HiP-MDP and PCA baselines
3. Learn a general policy =(s,wn;Y) by 4. Repeat step 2 until 7 stabilizes e For safety-critical applications, such as healthcare, a rough transition model and generally

training a MLP to predict a* = 7, (sn) optimal policy, may provide a way to safe-guard against truly poor actions



