Direct Policy Transfer via Hidden Parameter Markov Decision Processes

Jiayu Yao¹, Taylor Killian ^{1,2}, George Konidaris³, Finale Doshi-Velez¹

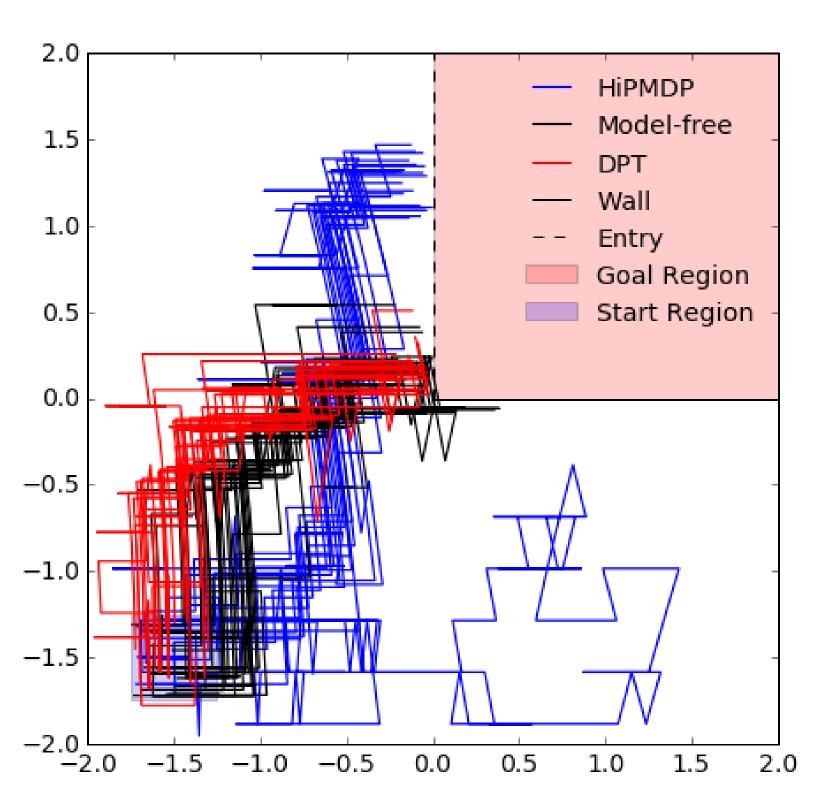
¹School of Engineering and Applied Sciences, Harvard University, MIT Lincoln Laboratory, Department of Computer Science, Brown University

Introduction

Problem Many applications involve learning from a series of tasks with similar dynamics. **Prior Work** The recently-introduced HiP-MDP addresses such situations by characterizing the variation in these dynamics with a few hidden parameters.

Limitation The approach is computationally inefficient since it still needs to train a DDQN. And it requires the estimated transition dynamics to be fairly accurate.

Our work We use these *model-based* parameters for *direct* policy transfer. Given a batch of training tasks, we demonstrate that this direct policy approach requires significantly less samples and computation to learn a policy for a new task.



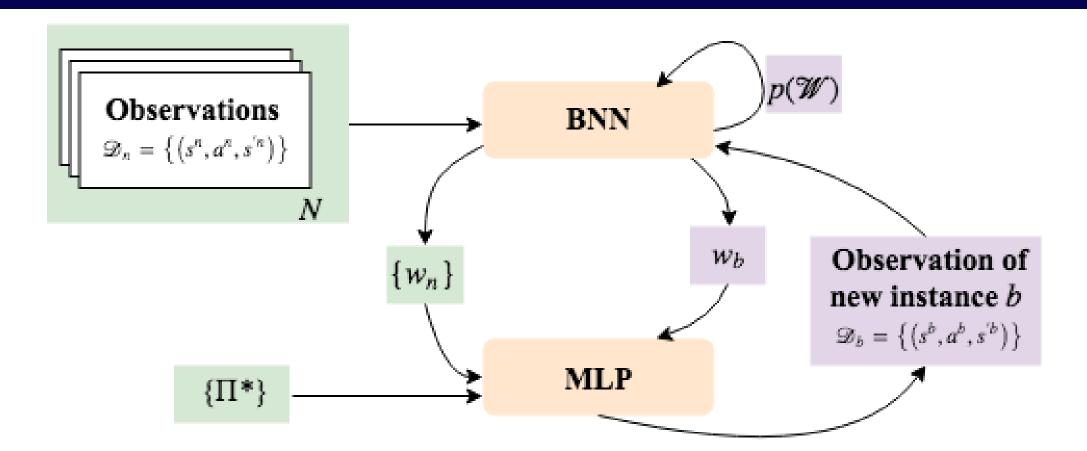
3000 - Model-free - HiPMDP - DPT - DPT - 1000 - 2000 0 10 20 30 40 50 Time Step(t)

(a) A comparison of epsilon greedy policies π_{DDQN} , π_{HiPMDP} , π_{DPT} ($\epsilon = 0.15$)

(b) A comparison of cumulative rewards of multiple runs following the three policies

Figure 1: Demonstration

Model



Training Phase

- 1. Collect initial observations $\mathcal{D} = \{\mathcal{D}_n\}_{n=1}^N$
- 2. Estimate the transition function and latent variables by iterativiely updating $p(\mathcal{W}|s^n, a^n, s^{'n}, w_n) \approx \Pi_i q(w_i)$ and \hat{w}_n^{MLE}
- 3. Learn a general policy $\pi(s, w_n; \mathcal{Y})$ by training a MLP to predict $a^* = \pi_n(s_n)$

Testing Phase

- 1. Initialize $w_b = E[w_n]$
- 2. Generate transitions \mathcal{D}_b with $\pi(s, w_b; \mathcal{Y})$
- 3. Update w_b with \mathcal{D}_b by minimizing α divergence of $q(\mathcal{W})$ and $p(\mathcal{W}|s^n, a^n, s^{'n}, w_n)$
- 4. Repeat step 2 until π stabilizes

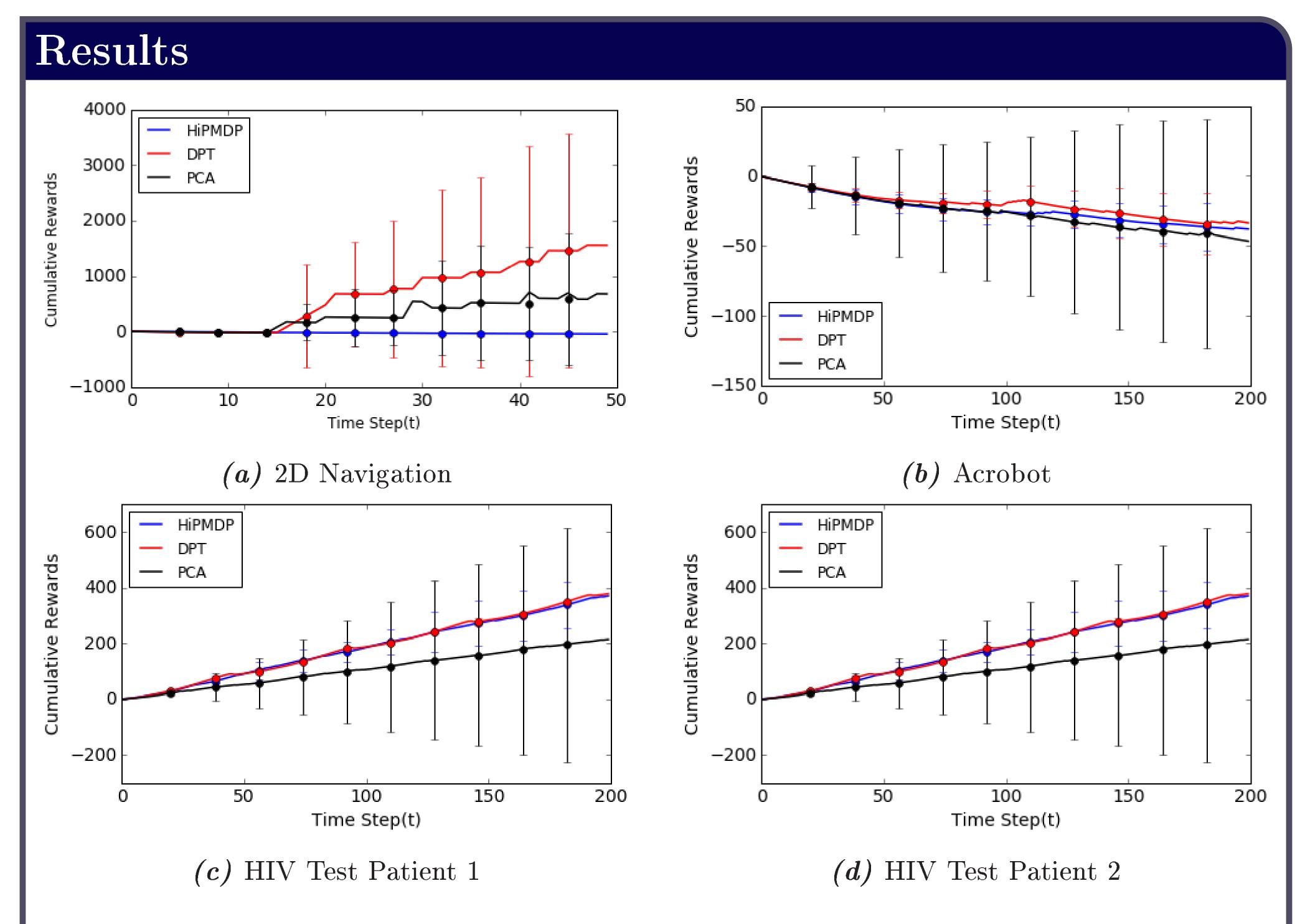


Figure 2: Cumulative rewards achieved throughout the initial episode of a newly encountered instance. The PCA baseline also uses a latent-representation to parametrize the policy, learned through a dimensionality reduction of the transition statistics. Denote the transition statistics of observed instances as Φ_N . Decompose $\Phi_N = U_{\Phi} S_{\Phi} V_{\Phi}^{\mathsf{T}}$. Then $w_b = \phi_b \cdot V_{\Phi}$

	\mathbf{C}	OMPUTATION T	IME	Cumulative Rewards			
	2D Nav	Acrobot	HIV	2D Nav	ACROBOT	$_{ m HIV}$	
PCA	$\mathbf{17.4s} {\pm} 0.52$	$\mathbf{56.3s} {\pm} 1.49$	$180.6\mathrm{s}{\pm}4.43$	317.9 ± 207.8	-42.7 ± 38.89	$100.8 {\pm} 12.8$	207.8 ± 1.53
HiPMDP	$1.0 \times 10^4 \mathrm{s}$	$1.9 \times 10^4 \mathrm{s}$	$1.0 \times 10^4 \mathrm{s}$	809.9 ± 35	-30.8 ± 33.2	726.7 ± 59.8	$580.0 {\pm} 21.9$
DPT	$1.1 \times 10^3 \mathrm{s}$	$1.2 \times 10^3 \mathrm{s}$	$1.2 \times 10^3 \mathrm{s}$	$\bf 891.9 {\pm} 319$	$-27.7 {\pm} 49.5$	${\bf 1425.0 {\pm} 5.6}$	$562.2 {\pm} 4.2$

Table 1: Experimental results where DPT is evaluated against HiP-MDP and PCA baseline

Conclusions

- The latent variable is **sufficient** to capture differences in the dynamics of an environment and can be used to parametrize policy diretly
- The DPT approach is **computationally-efficient** and generates **better** policies than HiP-MDP and PCA baselines
- For safety-critical applications, such as healthcare, a rough transition model and generally optimal policy, may provide a way to **safe-guard** against truly poor actions