
Harnessing Sloshing as a Passive Dampener

Taylor Killian Robert Klaus*,
with: Prof. Tadd Truscott*

Department of Mathematics, Department of Mechanical Engineering*
Brigham Young University
Supported by NSF Grant No. 0639328

Killian, Truscott (APS DFD–2011) Harnessing Sloshing as a Passive Dampener November 21, 2011 1 / 17



Objectives

Focus Areas

Determine the dynamics of rebound mitigation.

I Quantify the motion of the sphere.
I Discover the influence of varying physical parameters

Determine the details of the internal energy exchange.

I Investigate the interplay of cavity collapse and rebound mitigation.
F Video analysis shows the formation of an internal jet at the same time

as rebound mitigation.

I Extract the dimensionless parameters that define the energy loss
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Fill Volume Influence on Rebound Mitigation

Different fluid responses arose when varying the interior volume.

Trials of (l-r) 10%, 30% and 70% of internal volume and are dropped from 20 cm
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Effect of Drop Height

The measured rebound heights of a 10cm drop: water filled.
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Effect of Drop Height

The measured rebound heights of a 20cm drop: water filled.
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Effect of Drop Height

The measured rebound heights of a 30cm drop: water filled.
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Viscosity’s Influence on Rebound Mitigation

Different viscosities were tested, varied fluid behavior was observed.

All trials are filled to 30% of internal volume and are dropped from 20 cm

Trials of (l-r): Water µ = 8.9 × 10−4 N s
m2 , Alcohol µ = 1.92 × 10−3 N s

m2 , Glycerin µ = 9.5 × 10−1 N s
m2
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Viscosity’s Influence on Rebound Mitigation

Analysis of our data showed that the global effect of the sphere’s
motion is unchanged.
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Previous Work

Antkowiak et. al. 2006, Short-term dynamics of a density interface

following an impact

I “The interface curvature reverses violently, forming a concentrated jet
thanks to a purely inertial mechanism...”

Gekle et. al. 2009, High-Speed Jet Formation after Solid Object Impact
I “Jet formation...depends crucially on the kinetic energy contained in

the entire collapsing wall of the cavity...”
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Channeling Antkowiak and Gekle

This conceptual approach validates our direction and focus.

Sequence above: fill volume of 20%, dropped from 20cm.

Killian, Truscott (APS DFD–2011) Harnessing Sloshing as a Passive Dampener November 21, 2011 10 / 17



Energy Exchange: System Overview

We investigate the mechanism of cavity collapse in kinematic terms.
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Energy Exchange: Formulation

Investigating the energy exchange

PE0 = Mgh0

KE1A = PE0

KE1B = KE1A − flloss − dynloss

PE1C = KE1B

· · ·

Determining the losses to fluid fill
flloss,1=Mg(h0−h1)+mbg(h1,empty−h0)

flloss,2=Mg(h0−h2)+mbgh2,empty−flloss,1
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Energy losses to the fluid

flloss,1 = Mg(h0 − h1) + mbg(h1,empty − h0)

flloss,2 = Mg(h0 − h2) + mbgh2,empty − flloss,1

From these relations we establish the non-dimensional parameter E.
I E = flloss

Mgh0
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Normalizing the second rebound

Second rebound data is normalized to extract global information.
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Serves as an analog/description for Roller Hockey Ball dynamics.
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Conclusions

Sloshing within a partially fluid filled sphere acts as a passive
dampener.

Rebound suppression depends on drop height and fill volume.

There is an exchange of energy from the sphere to the fluid.

This exchange of energy occurs at cavity collapse and jet formation.
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Future/Continued Work

Build and verify numerical model using ADINA.

Analyze experiments performed with different sphere elasticity and
greater drop height.

I Determine convergence of data.

Refine energy method to replicate observed data.
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