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Motivation
Real-world tasks are often repeated—but not exactly

Variations in physical interactions often require subtle, yet important, 
adjustments in order to successfully complete unique instances of the same task 
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Markov Decision Processes (MDP)
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Markov Decision Processes (MDP)
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Learning Across Related MDPs
The objective of learning optimal control policies across related MDPs 

introduces an intriguing application of transfer learning

[Gupta, et al. 2017][Yahya, et al. 2016]

[Delhaisse, et al. 2017]

[Chen, et al. 2016]

[Tobin, et al. 2017] [Doshi-Velez and Konidaris 2016]

Environment Randomization Creation of an Invariant Subspace Latent Variable Modeling
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Hidden Parameter Markov Decision Processes (HiP-MDP)

Introduced by Doshi-Velez and Konidaris (2016) to account for 
related, yet distinct, MDPs when learning control policies

• Hidden parameters      estimated by latent, 
low-dimensional representation    

-      is fixed per task instance and fully 
parameterizes the task 
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Hidden Parameter Markov Decision Processes (HiP-MDP)

sdt+1 ⇡
KX

k=1

wkb T̂kad(st) + ✏

wkb ⇠ N (µwk ,�
2
w)

✏ ⇠ N (0,�2
nad)

• Transition dynamics are approximated by a 
linear combination of Gaussian Processes
-  The parameters       are used as weights

• Limitations of this model choice:
-Cannot accurately approximate nonlinear dynamics
-No interaction between state and latent weights
-Concerns about scalability due to GP bases

wb

Introduced by Doshi-Velez and Konidaris (2016) to account for 
related, yet distinct, MDPs when learning control policies
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Evaluating the HiP-MDP
A Simple Toy Domain

S : [�2, 2]2 ⇢ R2

A : ,!, ", #
with randomized step size

wb :Numerical estimation of dynamics 
present between blue/red instances

R(s, a) =

8
><

>:

+++, if in goal region

��, if run into wall

�, otherwise

8



Evaluating the HiP-MDP

• Learning the       requires that observations from separate 
task instances needed to overlap to differentiate between 
the observed dynamics 

- While reasonable in some domains (e.g. robotics), it is not feasible 
in more complex settings (e.g. human patients)

wb

Limitations of Original HiP-MDP

sdt+1 ⇡
KX

k=1
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Reformulating the HiP-MDP

By embedding the parameters      with the input to the transition function, we allow 
for direct interaction between the state and the latent dynamics encoded in the

wb

wb

sdt+1 ⇡
KX

k=1

wkb T̂kad(st) + ✏

wkb ⇠ N (µwk ,�
2
w)

✏ ⇠ N (0,�2
nad)

st+1 ⇡ T̂ (st, at, wb) + ✏

wb ⇠ N (µw,⌃b)

✏ ⇠ N (0,�2
n)
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st+1 ⇡ T̂ (st, at, wb) + ✏

wb ⇠ N (µw,⌃b)

✏ ⇠ N (0,�2
n)

Reformulating the HiP-MDP
Selecting a Transition Model

To satisfy the desired performance requirements of our reformulation of the HiP-MDP, we replace the GP 
basis functions with a Bayesian Neural Network, trained using ⍺-divergence minimization†  

- Naturally guarantees interaction between latent weights and state transitions
- Provides opportunity for direct transfer via online computation vs retaining/caching data
- More readily scalable to accommodate higher volumes of data and more complex transition dynamics

 

•What we want:
-  More efficiency and scalability
-  Nonlinear interactions between latent weights and state 
-  Retain probabilistic measure of model certainty

† Hernández-Lobato, et al. (2016, ICML)11



Reformulating the HiP-MDP
Selecting a Transition Model
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• With Toy 2D Navigation Domain: 6 task instances, 50 episodes per instance
• Transition model updated every 10 episodes

Comparing GP and BNN approaches for    , both with embedded latent parameters       : wbT̂

12    Hernández-Lobato, et al. (2016, ICML)
† Snelson and Ghahramani (2005, NIPS)



W

Training the BNN

Observe    … ……

st

st+1at

Network parameters

† Hernández-Lobato, et al. (2016, ICML)

wb ⇠ N (µw,⌃b)

T̂ (st+1|st, at;wb) is trained by iteratively updating          and the network parameters      
using ⍺-divergence minimization†  
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Algorithmic Methodology

† van Hasselt, et al. (2016, AAAI)

Policy Development
(Double DQN)†
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wb 2 R5

With a trained BNN, on a newly initialized task instance:

1. Initial exploratory episode
2. Estimate        and refine the BNN model
3. Train a control policy 
4. Execute       in subsequent episodes

wb

⇡b
⇡b
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Algorithmic Methodology

† van Hasselt, et al. (2016, AAAI)

Evaluated against 4 baselines:
1. Model-free
2. Model averaged over all observed instances
3. Model trained only on the current instance
4. Model with latent weights used as a linear 

output layer for BNN predictions

Policy Development
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With a trained BNN, on a newly initialized task instance:

1. Initial exploratory episode
2. Estimate        and refine the BNN model
3. Train a control policy 
4. Execute       in subsequent episodes
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Performance Comparison
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Performance Comparison

Adapted from Adams, et al. (2004)
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Simulated HIV Treatment†

† Ernst, et al. (2006)17



•  The HiP-MDP provides a framework for robust and efficient transfer learning
- Facilitated by a latent embedding to an approximated dynamic model of the 
environment

•  Embedding the latent estimation of the environment with the input is more 
advantageous in domains with highly complex and nonlinear dynamics
- This motivates further extension to even more complicated and realistic applications

•  Further improvements to the HiP-MDP will contribute to a general transfer 
learning framework capable of addressing the most nuanced and complex 
control problems

Conclusion

Please visit us at poster #36 this evening. We’re looking forward to meeting you.
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taylorkillian@g.harvard.edu 

sdaulton@g.harvard.edu 

Contact

@tw_killian

https://github.com/dtak/hip-mdp-public
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Simulated HIV Treatment

Adapted from Adams, et al. (2004)

Cumulative Reward Long Run Rewards
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Modeling Patient Response to HIV Treatment

Notional transitions from unhealthy steady states to 
healthy steady states, defined by a patient’s individual 
physiological response to treatment. 

❖ Adams, et al. (2004) modeled a patient’s 
response to HIV treatment with a system 
of nonlinear equations

❖ Defined by 22 physical parameters

❖ Ernst, et al. (2006) instituted a RL 
framework to develop effective treatment 
policies for HIV patients

❖ Perturbations of the underlying 
parameters admit subtle variations in the 
dynamics of patient response 

❖ Each variation has its own optimal policy

State Space 
Six Indicators of Patient Health 
• Healthy CD4+ T-lymphocytes 
• Healthy Macrophages 
• Infected CD4+ T-lymphocytes 
• Infected Macrophages 
• Free virus particles 
• HIV-specific cytotoxic T-cells

Action Space 
• No Treatment 
• Protease Inhibitor (PI) 
• Reverse Transcriptase 

Inhibitor (RTI) 
• PI + RTI

Reward Function 
Weighted combination of number of 
healthy versus infected cells along 
with penalty for side effects introduced 
by each treatment

23
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Modeling Patient Response to HIV Treatment

❖ Adams, et al. (2004) modeled a patient’s 
response to HIV treatment with a system 
of nonlinear equations

❖ Defined by 22 physical parameters

❖ Ernst, et al. (2006) instituted a RL 
framework to develop effective treatment 
policies for HIV patients

❖ Perturbations of the underlying 
parameters admit subtle variations in the 
dynamics of patient response 

❖ Each variation has its own optimal policy



Acrobot

Cumulative Reward Long Run Rewards
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Partially Observable Markov Decision Processes

❖ POMDPs are a generalization of MDPs where 
either the system dynamics or state 
representation are not fully observed

❖ States (or transition dynamics) are represented by 
distributions rather than discrete quantities
❖ Current developments in RL decompose these 

distributions into a set of options, with an explicit 
[Bacon et al., 2016] or latent [Chen et al., 2017] 
representation and then solve as a discrete MDP
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Gaussian Processes
When provided data                  , GPs are fully specified  by a mean              and covariance function                    
of some underlying true process    

X 2 RD m(X) k(X,X0)

f(X)

Then, when given test data        , the posterior prediction of the output values can be represented as:X⇤

f⇤|X⇤,X, f ⇠ N
�
K(X⇤, X)K(X,X)�1f, K(X⇤, X⇤)�K(X⇤, X)K(X,X)�1K(X,X⇤)

�

That is,
m(X⇤) = K(X⇤, X)K(X,X)�1f

k(X,X 0) = K(X⇤, X⇤)�K(X⇤, X)K(X,X)�1K(X,X⇤)
Typically,

k(x, x0) = �2 exp

✓
� (x� x0)2

2`2

◆
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Bayesian Neural Networks (BNN) 
Alpha Divergence Minimization [Hernández-Lobato et al., 2015]

Visualizing effect of alpha parameter when approximating different distributions
“Black-Box alpha-Divergence Minimization” [Hernández-Lobato et al., 2015]

Example Regression Performance of BB-alpha trained BNN
“Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks”

[Depeweg et al., 2016]

❖ Alpha-Divergence Minimization is an approximate inference technique 
for estimating the posterior network parameter distributions of the BNN

❖ Used to approximate the intractable calculation of (details in backup): 

❖ Alpha-divergence trained BNN transition functions are both scalable and 
expressive, a perfect match for our needs

p(✓|D) /
"

NY

n=1

p(xn|✓)
#
p0(✓)
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Bayesian Neural Networks
Variational Inference: Alpha Divergence Minimization

p(✓|D) /
"

NY

n=1

p(xn|✓)
#
p0(✓)We aim to solve for the posterior distribution of our parameter, given some observations: 

This is typically intractable as the form of the distribution p is usually unknown. In variational inference, we approximate this 
posterior by constructing a separate distribution q and then try to optimize its parameters such that it is “close” to p

Alpha Divergence minimization seeks to minimize the distance between p and q via:

D↵[p||q] =
1

↵(1� ↵)

✓
1�

Z
p(✓)↵q(✓)1�↵d✓

◆

Then by matching moments and by linearly approximating the parameters of q we solve what is known as the energy function of 
Power Expectation Propagation:

E(�0, {�n}) = logZ(�0) +

✓
N

↵
� 1

◆
logZ(�q)�

1

↵

NX

n=1

log

Z
p(xn|✓)↵ exp

�
s(✓)T (�q � ↵�n)

 
d✓
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Developing a Policy
❖ [Deisenroth and Rasmussen (2011)] introduced a data-efficient methodology (PILCO) that 

utilizes a model (approximated or derived) of observed states to learn optimal control policies 
in a paired online/offline fashion

❖ Was recently updated by [Gal and Rasmussen (2017)] to incorporate deep structures

❖ After this fashion, with a large batch of previously run data, we execute the following:  
 
# Observe randomly initialized instance of system (e.g. receive a new patient) 
# Repeat for N episodes  
    Observe system according to current policy 
    # Periodically update latent weighting of current instance 
    # Update policy using Double Deep Q-Network with approximated  
# Update GP hyperparameters

T (s0| s, a, ✓b)
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A Use Case for Transfer Learning
❖ Individual response to medical 

treatments can vary across the 
patient population

❖ Some treatments can lead to no 
response or potentially harmful 
side effects

❖ Significant challenge arises when 
patient is diagnosed with 
aggressive, life-altering illness

❖ e.g. HIV/AIDS, Diabetes, Cancer, etc.Image courtesy: http://arcpointos.com/pharmacogenetics-testing/

Can we determine an optimal treatment policy for any patient according to their 
individual genetic characteristics, in diagnosis and throughout administration? 
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Transfer Learning

❖ Key to the transfer between varied instances of 
the same task is in the construction and 
estimation of an invariant feature space

❖ To aid the development of a robust and efficient 
transfer algorithm in such scenarios we 
introduce a simple 2D navigation domain:

❖ Hidden latent parameter determines how 
agent can transition to Goal Region

❖ Agent must learn separate control policies 
based on this latent parametrization

Intertask variation: a more subtle environment for transfer

State space: 
Actions: Left, Right, Up, Down

R(s, a) =

8
<

:

1000 if agent reaches Goal Region
�5 if agent hits wall or attempts invalid transition
�0.1 otherwise

[s1, s2] 2 [�2, 2] ⇢ R2
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Toy Problem: 2D Navigation

Cumulative Reward Model Prediction Error
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Deploying the HiP-MDP
Extending to larger domains

State Space 
Four angular meas. of pendulum  
• Hinge angular displacement 
• Hinge angular velocity  
• Tip angular displacement 
• Tip angular velocity

Action Space 
• Apply torque left 
• Apply torque right 
• Do nothing

Reward Function 

R(st, at) =

⇢
�1 if tip not above line
10 if tip above line

The Acrobot

Notional transitions from unhealthy steady states to 
healthy steady states, defined by a patient’s individual 
physiological response to treatment. 

State Space 
Six Indicators of Patient Health 
• Healthy CD4+ T-lymphocytes 
• Healthy Macrophages 
• Infected CD4+ T-lymphocytes 
• Infected Macrophages 
• Free virus particles 
• HIV-specific cytotoxic T-cells

Action Space 
• No Treatment 
• Protease Inhibitor (PI) 
• Reverse Transcriptase 

Inhibitor (RTI) 
• PI + RTI

Reward Function 
Weighted combination of number of 
healthy versus infected cells along 
with penalty for side effects introduced 
by each treatment

HIV Treatment
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