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Motivation

Real-world tasks are often repeated—but not exactly

Variations in physical interactions often require subtle, yet important,

adjustments in order to successfully complete unique instances of the same task
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Markov Decision Processes (MDP)

(S, A, T,R,y) = =

e S: state space; A: action space

o T'(S¢11]|S¢,a¢;0)is the transition model

* R(s¢,as)is the reward model with discount factor 7
e T(s¢) — ay is the policy mapping states to actions

e T'(st41|5¢, a5 0)



Markov Decision Processes (MDP)
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e S: state space; A: action space
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* R(s¢,as)is the reward model with discount factor 7
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L earning Across Related MDPs

The objective of learning optimal control policies across related MDPs
introduces an intriguing application of transfer learning

Environment Randomization Creation of an Invariant Subspace Latent Variable Modeling

h > 1
[Yahya, et al. 2016] [Gupta, et al. 2017]

e
A\
.. -
T )
[Delhaisse, et al. 2017]

[Tobin, et al. 2017] [Doshi-Velez and Konidaris 2016]




Hidden Parameter Markov Decision Processes (HiP-MDP)

Introduced by Doshi-Velez and Konidaris (2016) to account for
related, yet distinct, MDPs when learning control policies

Hidden parameters 0, estimated by latent,
low-dimensional representation We T(s011|50, ar: 0p)

- Oy is fixed per task instance and fully

parameterizes the task < ) @



Hidden Parameter Markov Decision Processes (HiP-MDP)

Introduced by Doshi-Velez and Konidaris (2016) to account for
related, yet distinct, MDPs when learning control policies

® Transition dynamics are approximated by a

K
linear combination of Gaussian Processes g Z r
- The parameters Wh are used as weights t+1

e Limitations of this model choice:

-Cannot accurately approximate nonlinear dynamics N(
-No interaction betweer.l .state and latent weights e ~ N (07 0-2 )
-Concerns about scalability due to GP bases



Evaluating the HiIP-MDP

A Simple Toy Domain

; Region of
y’ Origin

S :[-2,2]* C R?

A :< ) >7 T? \l’
with randomized step size
-+ +, if in goal region
R(s,a) = ¢ ——, if run into wall
—, otherwise

Wy :Numerical estimation of dynamics
present between blue/red instances



Evaluating the HiIP-MDP

Limitations of Original HiP-MDP

"N

; Region of
\ "/ Origin

K

d -

Spi1 N E Wb Lhad(St) + €
k=1

wkb ~ N(:u’wk70-121))
€~ N(O? U'rzzad)

® Learning the Wp requires that observations from separate
task instances needed to overlap to differentiate between

the observed dynamics
- While reasonable in some domains (e.g. robotics), it is not feasible
in more complex settings (e.g. human patients)
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Reformulating the HiP-MDP

I_A|:17l

K
SEZ_H ~> ZM Tkad(st) —+ € St_|_1 %I(St, at,ﬂ) €
k=1
wy ~ N (fhy, )
Wt ~ N (f, 0 e N(0,07)
€~ N(07 J?Lad) o

By embedding the parameters wy with the input to the transition function, we allow

for direct interaction between the state and the latent dynamics encoded in the wy
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Reformulating the HiP-MDP

Selecting a Transition Model

e What we want: St11 ~ T(St, ¢, wb) + €
- More efficiency and scalability Wy, ~ N( 0 Zb)
W 9

- Nonlinear interactions between latent weights and state

- Retain probabilistic measure of model certainty € v N (O, O TQL)

To satisfy the desired performance requirements of our reformulation of the HiP-MDP, we replace the GP
basis functions with a Bayesian Neural Network, trained using a-divergence minimizationt

- Naturally guarantees interaction between latent weights and state transitions
- Provides opportunity for direct transfer via online computation vs retaining/caching data

- More readily scalable to accommodate higher volumes of data and more complex transition dynamics

11 1+ Herndndez-Lobato, et al. (2016, ICML)



Reformulating the HiP-MDP

Selecting a Transition Model

35000

- GP with embedded w;,
- BNN with embedded wy

30000

25000

S
5

15000

10000

2000

Time to Complete Episode [s]

0 20 100 150 200 250 300

Episode Completed

Comparing GP and BNN approaches for 1, both with embedded latent parameters Wa:

» With Toy 2D Navigation Domain: 6 task instances, 50 episodes per instance

* Transition model updated every 10 episodes t Snelson and Ghahramani (2005, NIPS)

12 Hernandez-Lobato, et al. (2016, ICML)



Training the BNN

Observe {Sta g, T't, St+1}

from multiple 0,

T'(S¢+1|5¢, at; wp) is trained by iteratively updating Wp and the network parameters )}/

using o-divergence minimization?

13 1+ Herndndez-Lobato, et al. (2016, ICML)



Algorithmic Methodology

Estimate

BININ

e Policy Development
w (Double DON)T

®

With a trained BNN, on a newly initialized task instance:

1. Initial exploratory episode
2. Estimate Wp and refine the BNN model
3. Train a control policy 7y

4. Execute b in subsequent episodes

14

Q™ (s,a)

Policy

1 van Hasselt, et al. (2016, AAAI)



Algorithmic Methodology

Estimate

BININ

e Policy Development

w (Double DON)T

®

With a trained BNN, on a newly initialized task instance:

1. Initial exploratory episode
2. Estimate Wp and refine the BNN model
3. Train a control policy 7

4. Execute b in subsequent episodes

=1 Q™ (s, a)

Policy

Evaluated against 4 baselines:

1. Model-free
2. Model averaged over all observed instances
3. Model trained only on the current instance

4. Model with latent weights used as a linear
output layer for BNN predictions

15

1 van Hasselt, et al. (2016, AAAI)



Acrobot

S ¢ R*
Al =3

wbER5

Performance Comparison

Acrobot

0

I
Q1
o

-100

M

-150 —}— HiP-MDP with embedded w,
—— HiP-MDP with linear w,
—}— Model-based from scratch
—}— Average model

—}— Model-free

Cumulative Reward Per Episode

I
N
-
o

0 1 2 3 2 S 6 7 38 9

Episode
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Performance Comparison

Simulated HIV Treatment?®

1.2 1e7
—— HiP-MDP with embedded w,
—— HiP-MDP with linear w;

1.0 —}— Model-based from scratch
—— Average model
—— _Model-free

oo

0.6

Adapted from Adams, et al. (2004)

+

Cumulative Reward Per Episode

HIV Treatment
0.2
S e RY [
. 0.0
Al =4 0 1 2 3 4 5 6 7 8 9

wbER5

Episode

17 1 Ernst, et al. (2006)



Conclusion

e The HiP-MDP provides a framework for robust and efficient transfer learning

- Facilitated by a latent embedding to an approximated dynamic model of the
environment

 Embedding the latent estimation of the environment with the input is more

advantageous in domains with highly complex and nonlinear dynamics
- This motivates further extension to even more complicated and realistic applications

e Further improvements to the HiP-MDP will contribute to a general transfer
learning framework capable of addressing the most nuanced and complex
control problems

Please visit us at poster #36 this evening. We're looking forward to meeting you.
18



Contact

—['@"] taylorkillian@g.harvard.edu

W @tw Killian

sdaulton@g.harvard.edu

O https://github.com/dtak/hip-mdp-public

Please visit us at poster #36 this evening. We're looking forward to meeting you.
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Simulated HIV Treatment

Adapted from Adams, et al. (2004)

HIV Treatment

S e RC
Al =4

wbER5

1.0

0.2

0.0

12 1e7

Cumulative Reward

—f— HiP-MDP with embedded w,

—f— HiP-MDP with linear w,

—}— Model-based from scratch

—}— Average model
Model-free

—

L1
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- Long Run Rewards
1.2 '€ =

1.0

0.8

mr lm M*I 'W' MM‘* M‘W‘W\ \l'

IP-MDP with embedded w,
HiP-MDP with linear w;

0.2 —— Model-based from scratch
L —— Average model
I —— Model-free
0.0
0 50 100 150 200 250 300 350

Episode



Modeling Patient Response to HIV Treatment

* Adams, et al. (2004) modeled a patient’s
response to HIV treatment with a system
of nonlinear equations

+ Defined by 22 physical parameters

+ Ernst, et al. (2006) instituted a RL

framework tO develop effeCtlve treatment Notional transitions from unhealthy steady states to
.« e . healthy steady states, defined by a patient’s individual
p()llCleS for HIV patlents physio%ogicallc'esponse toI treatr:ent. | e
* Perturbations of the underlying
. . . . State Space Action Space Reward Function R(st, at) :

parameters admit subtle variations in the 2 Healthy DA+ T-ymphocytes - Proteace nhibitor () healthy versus infected calls slong.

. . * Healthy Macrophages . Re\_/e_rse Transcriptase with penalty for side effects introduced
dynamlcs Of p atlent reSpOnse :z;:gtzg Ic\:/lggr-; ;)I';]I;/gneihocytes . :2|hlb|':t§r| (RTI) by each treatment

* Free virus particles
» HIV-specific cytotoxic T-cells

“ Each variation has its own optimal policy

23



Modeling Patient Response to HIV Treatment

* Adams, et al. (2004) modeled a patient’s
response to HIV treatment with a system
of nonlinear equations

7/

+ Defined by 22 physical parameters

+ Ernst, et al. (2006) instituted a RL
framework to develop effective treatment
policies for HIV patients

“ Perturbations of the underlying
parameters admit subtle variations in the
dynamics of patient response

R/

* Each variation has its own optimal policy

24

parameter value units description

A1 10,000 %&;y target cell type 1 production (source) rate

d, 0.01** T:y target cell type 1 death rate

€1 €[0,1) - efficacy of reverse transcriptase inhibitor

€9 €[0,1) - efficacy of protease inhibitor

k, 80x10°7 — ri;’:‘i‘_ dav population 1 infection rate

A2 31.98 %&‘;y target cell type 2 production (source) rate

d, 0.01** Kly target cell type 2 death rate

f 0.34 (¢ [0,1]) = treatment efficacy reduction in population 2
ko 1x10~* ——ml oy Population 2 infection rate

) 0.7* ﬁ infected cell death rate
m, 1.0x107° Q?;Lm immune-induced clearance rate for population 1
mo 1.0 x 1072 % immune-induced clearance rate for population 2
Nt 100* T virions produced per infected cell

s 13* % virus natural death rate

p1 1 el average number virions infecting a type 1 cell
P2 1 = average number virions infecting a type 2 cell
AE 1 % immune effector production (source) rate

b 0.3 o maximum birth rate for immune effectors
K; 100 C::% saturation constant for immune effector birth
de 0.25 f maximum death rate for immune effectors
Kg 500 % saturation constant for immune effector death
O 0.1¢ % natural death rate for immune effectors

Table 1: Parameters used in model (2.1). Those in the top section of the table are taken
directly from Callaway and Perelson. Parameters in the bottom section of the table
are adapted from those in Bonhoeffer, et al.. The superscripts * denote parameters the
authors indicated were estimated from human data and ** denote those estimated from

macaque data.



Acrobot

Cumulative Reward Long Run Rewards
0
0
: —20 |
-50 \ 40 I
© B - 60
§ -100 §
| I 1
-150 —}— HiP-MDP with embedded w; ~100 —— HiP-MDP with embedded w
—— HiP-MDP with linear wy — HiP-MDP with linear w;
Acrobot —— Model-based from scratch —— Model-based from scratch
-120
500 —}— Average model —— Average model
—— Model-free —— Model-free
-140
S c Rél 0 1 2 3 4 5 6 7 8 9 0 20 40 60 80 100 120 140
Episode Episode

Al =3

wb€R5
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m oy Paraally Observable Markov Decision Processes

“ POMDPs are a generalization of MDPs where
either the system dynamics or state

representation are not fully observed ) /
~
* States (or transition dynamics) are represented by \lj /(L/ / 7/4(
DN

distributions rather than discrete quantities A,

\,/

0\ /
s
* Current developments in RL decompose these \\ ~)
distributions into a set of options, with an explicit — —/
[Bacon et al., 2016] or latent [Chen et al., 2017]

representation and then solve as a discrete MDP

26
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U Gaussian Processes

7S5
oA
4&"\

When provided data X € R¥, GPs are fully specified by a mean m(X) and covariance function k(X X')

of some underlying true process f(X)

Then, when given test data X, the posterior prediction of the output values can be represented as:

ol X, Xy f ~ N (K(X, X)K(X, X) 7' f, K(X., X)) — KXo, X)K(X, X) 'K (X, X))

That is,

m(X,) = K(X,, X\)K(X,X) 'f

X, X') = K(X., X.) — K(X,., X\)K(X,X) 'K(X, X,)

Typically,

k(z,2') = 02 exp ( (= ;;/)2>

27



IACS

AvAv) Bayesian Neural Networks (BNN)

Ay

'@I@:&V Alpha Divergence Minimization [Hernindez-Lobato etal., 2015]
ar

“ Alpha-Divergence Minimization is an approximate inference technique
for estimating the posterior network parameter distributions of the BNN

N i
# Used to approximate the intractable calculation of (details in backup): p(0|D) x H p(xn|0) | po(0)
n=1 i

“ Alpha-divergence trained BNN transition functions are both scalable and
expressive, a perfect match for our needs

8!
g tends to fit a local mode of p q tends to fit p globally
- 1 1 | -
0 0.5 1 q

p p p p
A/q\ AV\ V\ | m

Y = —0O Yy — (_) (Y — 05 Q = l x = OO

KL{q |/ p) VB KL(p|/q¢) EP
iy 0 4 _g 0 4 _4 0 4 _4 0 4
Visualizing effect of alpha parameter when approximating different distributions Example Regression Performance of BB-alpha trained BNN

“Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks”

“Black-Box alpha-Divergence Minimization” [Herndndez-Lobato et al., 2015]
[Depeweg et al., 2016]
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.
';‘,;;.,@ Bayesian Neural Networks

204

4"4)

Variational Inference: Alpha Divergence Minimization

N
We aim to solve for the posterior distribution of our parameter, given some observations: P(8|D) o | | | p(xx|0) | po(6)

This is typically intractable as the form of the distribution p is usually unknown. In variational inference, we app_roximate this
posterior by constructing a separate distribution q and then try to optimize its parameters such that it is “close” to p

Alpha Divergence minimization seeks to minimize the distance between p and q via:

Dapllq] = a(ll_ o) (1 - /p(ﬁ)“qw)l_“w)

Then by matching moments and by linearly approximating the parameters of q we solve what is known as the energy function of
Power Expectation Propagation:

E(Xo,{\n}) =log Z(Ag) + (ﬂ — 1> log Z(A;) — — Z 10g/ (2n]0)* exp {5(0)" (A, — a\,) } dO

8%

29
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e Developing a Policy

“ [Deisenroth and Rasmussen (2011)] introduced a data-efficient methodology (PILCO) that
utilizes a model (approximated or derived) of observed states to learn optimal control policies
in a paired online/ offline fashion

+ Was recently updated by [Gal and Rasmussen (2017)] to incorporate deep structures

“ After this fashion, with a large batch of previously run data, we execute the following:

# Observe randomly initialized instance of system (e.g. receive a new patient)
# Repeat for N episodes

Observe system according to current policy

# Periodically update latent weighting of current instance T(s'| s,a,6p)

# Update policy using Double Deep Q-Network with approximated
# Update GP hyperparameters

30
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aiwey A Use Case for Transfer Learning

S\
45?‘4»

All pahgnts wqh Not all reqund !o the + Individual response to medical
same diagnosis. same medications.
- N treatments can vary across the
B B I I B A patient population
/ P3 - Normal
(Eilic ALl COnVSRIONONEos i) * Some treatments can lead to no
g i 406 ¢ b response or potentially harmful
B i = ¥
i d ) 'l- .
P3 - Moderate risk side ettects
9 Consider alternative drug or dose .

p g * Significant challenge arises when
\ ! ¢ patient is diagnosed with

T aggressive, life-altering illness
Treat with alternative drug or dose

i i
Image courtesy: http:/ /arcpointos.com / pharmacogenetics-testing / e, g HIV / AIDS/ Diabetes/ Cance]j, etc.

(Can we determine an optimal treatment policy for any patient according to their
individual genetic characterisucs, in diagnosis and throughout administration?

31



.
RO T'ranster Learning

A
7

" v' S\ 4 . . .
(éégé» Intertask variation: a more subtle environment for transfer

“ Key to the transfer between varied instances of
the same task is in the construction and
estimation of an invariant feature space

* To aid the development of a robust and efficient
transfer algorithm in such scenarios we
introduce a simple 2D navigation domain: ' 0y

I Region of
y’ Origin

* Hidden latent parameter determines how
agent can transition to Goal Region

+ Agent must learn separate control policies
based on this latent parametrization

State space: [51,82] € [—2,2] C R?
Actions: Left, Right, Up, Down

1000 if agent reaches Goal Region
R(s,a) = —b if agent hits wall or attempts invalid transition
—0.1 otherwise

32



Toy Problem: 2D Navigation

Cumulative Reward Model Prediction Error
1500 0.35 _

—I— HiP-MDP with embedded w;
0.30 | —J— HiP-MDP with linear w,

1000 t —F— Model-based from scratch
Region of | 1 | 0.25 | —}— Average model
¢ Origin 500 ] l | \
| | 0.20 ) 1 ]
T 1 | | I | Ly - | T / |
: 0 />< — 2 015 S Pl N
[0} F 1 »
04 1 + e \
I I 1 1 \\/
1 1 1 ] 0.10 1 T 1 1
=500 1 :
—F— "HiP-MDP with embedded w; _
—}— HiP-MDP with linear w; 0.05
TO_YZDNHVigHﬁOH 1000 —t— Model-based from scratch )
—}— Average model 0.00
— Model-free
-1500 -0.05
S € R2 0o 1 2 3 4 5 6 T 8 9 0 1 > 3 4 5 & 7
Episode -
Episode
Al = 4
Wy € R3
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The Acrobot

Goal: Raise tip above line

Model-free DDQN on Acrobot

Cumulative Reward (30 ep moving avg)

1000 1500 2000

Episode 1

Action Space Reward Function

Apply torque left

State Space

Four angular meas. of pendulum -

* Hinge angular displacement *  Apply torque right e b i
« Hinge angular velocity « Do nothing R(sy,ar) = { —1 ! t%P not a Ove 1€
«  Tip angular displacement 10 if tip above line

Tip angular velocity

HIV Treatment

Notional transitions from unhealthy steady states to
healthy steady states, defined by a patient’s individual
physiological response to treatment.

State Space

Six Indicators of Patient Health
Healthy CD4+ T-lymphocytes
Healthy Macrophages
Infected CD4+ T-lymphocytes
Infected Macrophages

Free virus particles
HIV-specific cytotoxic T-cells

34

Deploying the HIP-MDP

Extending to larger domains

Action Space

5 1e10 hiv HiP-MDP vs Baselines

1]

= full

~— modelfree
~— modelbased
——— onesize

.

0 500 1000 1500 2000 2500 3000 3500

Episode ¢

100-ep Moving Average Cumulative Reward in Episode ¢

Reward Function R(s;,a;) :
Weighted combination of number of
healthy versus infected cells along

with penalty for side effects introduced
by each treatment

No Treatment
Protease Inhibitor (PI)
Reverse Transcriptase
Inhibitor (RTI)

Pl + RTI
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